
Abstract

In this paper, we propose a new model using central 

pattern generators (CPG) for the stable motion of 

Humanoid robot. After that we compare the proposed 

model with the existing Taga’s model of humanoid 

robot. The Matsuoka Neural Oscillators are used to 

generate the required signals to realize the coordinated 

movement of a musculoskeletal model of humanoid 
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Human locomotion system has been a motivation for 
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robots. Human locomotion is characterized by smooth, 
regular and repeating movements of legs.  The sequence 
of events that take place during human locomotion can 
be summarized as: generation of signals in the central 
nervous system, transmission of signals to peripheral 
nervous system, contraction and extension of muscles 
to develop forces and moments at joints to produce the 
resulting motion. Neurobiologists strongly believe that 
the animal locomotion is governed by rhythm-generating 
networks in the nervous system, which are called central 
pattern generators (CPGs). The central pattern generators 
are biological oscillators which consists of a number of 
neurons, the neurons are connected to each other in such a 

way that they can generate coordinated oscillations due to 
the membrane potentials of the neurons. Mathematically, 
CPGs are generally modeled as coupled nonlinear 
ordinary differential equations. To implement CPGs 
and to generate required signals a number of nonlinear 
oscillators have been proposed and developed by various 
authors, some of them are Vander Pol, Hopf, Rayleigh 
and Matsuoka oscillators. Matsuoka oscillators are most 
frequently used for movement simulation and rhythmic 
movement pattern generation. Because they are easy to 
use in comparison of other oscillators.  Employing the 
Matsuoka neural oscillator, Taga et.al. placed a CPG in the 
feedback loop to activate rhythmic muscle contractions 
and extensions, where the commanded ������������
����
through sensory signals in response to changes in the 
environment and body mechanics. This robot model 
was also simulated and applied to the 3D locomotion by 
Miyakoshi et.al. Liu et.al.� �
���� ���� ������ 
	� ����
model with new interconnection coupling links and its 
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studies are also reported to expound the application of 
CPG based controller for biped robots, quadruped robots 
and hexapods. In the central nervous system the human 
like motion is controlled hierarchically at several levels, 
for example the cerebral cortex, brainstem and spinal 
cord. Locomotion studies have shown that the low level 
motion patterns such as swimming, running and walking 
in vertebrates are generated by the CPG mostly found in 
the spinal cord.        

A CPG is a distributed biological neural network which 
can produce coordinated rhythmic signals without 
oscillating input from the brain or from sensory feedback. 
As an example, they mention that a cat exhibits a walking 
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gait as soon as a simple signal is sent to its brain stem. By 
changing the amplitude of the signal, the cat’s movements 
can be changed from a trotting- to a walking- and even a 
running gait. In this example the nervous cell in the cat’s 
brain stem and spinal cord is the neural network forming 
the CPG. The nervous signals required to make the cat’s 
leg joints produce the trajectories of the gait are the output 
of the neural network.  

The rhythm control is a challenging task whenever the 
humanoid move at the terrain, because the terrain may 
be even or uneven which pauses threat on the movement, 
so the rhythm control is necessary. K. Matsuoka (1987) 
investigated rhythm control in some networks consisting 
of a number of neurons, these networks consists of two, 
three or four neurons and include various aspects in the 
generation of rhythms in bipeds. Generally there are four 
methods to control the rhythm generation:
 1. Uniform alternation in the intensity of whole input.
 2. Temporal alternation in the stimulus pattern of the 

multimode rhythm generators.
 3. Change in the part of inputs.
 4. Change in the synaptic weights of neurons.  

The rhythm control models proposed in this paper may 
be used from simple to even more complicated models 
of the bipeds. [Kiyotoshi Matsuoka, 1987, Mechanisms 
of frequency and pattern control in the neural rhythm 
generators].

From the biological point of view, the neural circuits 
which are responsible for generating rhythmic output are 
the pacemaker model, the closed loop model and the half 
centre model.  The closed loop model is very similar to the 
Matsuoka’s half center model. It is proposed for the tailed 
newt like amphibian. Pacemaker model involves complex 
interaction of ionic currents, of a group of pacemaker 
cells. Electrical signals are generated by such cells 
which are responsible for controlling of heart rates. The 
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neurons and extensor motor neurons through inhibitory 
interconnections.  

Mathematically CPGs may be described as a set of 
identical systems of differential equations, which are 
characterized as a bounded subset of the phase space to 
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long time. The periodic movement of the biped is a limit 
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order coupled differential equations, one representing the 
membrane potential of the neuron and the other the degree 
of neuron fatigue (Matsuoka et al., 1987).
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Where the output of the neuron is nonlinear in a logic 
function.

The mathematical neuron model has two state variables 
and constant parameters but their values must be 
selected appropriately. %���������������������������������i, 
corresponding to the membrane potential of the neuron.

Figure 1.1(a):  General Matsuoka Neuron Model (b) 

One Oscillator Consisting of An Extensor and Flexor

The second state variable is fi, representing the degree of 
adaptation or self inhibition in the i-th neuron, b is the 
adaptation constant, and yi is the output of the i-th neuron. 
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constant specifying the rise time when step input is given. 
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5ai is the time constant specify the adaptation time lag, wij 
denotes the inhibitory synaptic connection  weight from 
the j-th neuron to the i-th neuron , wij<=0 for i!=j and wij 
JO�	
���J+��Q!ijyj represents the total input from neurons 
inside a neural network, S0 is constant drive input, and wsi  
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denotes a drive input connection weight. Feedi is an input 
feedback sensor signal to the i-th neuron representing 
internal sensory information and interaction between 
the robot and its environment, and it is used mainly in a 
closed loop CPG model or else is set to zero. Input feedi  
may be any number of inputs applied to the i-th neuron 
model, which may be either proprioceptive signals or 
signals from other neurons. Note that time constants 
5ri� ��� 5ai change frequency and that constant input S0 
changes amplitude.

Figure 1.1(a) shows the general Matsuoka neuron model 
described by equation (1), (2) and (3).

Assuming that the Matsuoka oscillator consists of 
two neurons with four state variables, two variables 
represent the inner state of each neuron ui and uj, and 
the other two state variables represent the degree of 
adaptation for each neuron, fi and fj, these neurons linked 
reciprocally, alternately inhibit and excite each other to 
produce oscillation as output. Such activity accounts for 
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extensor muscles at joints during walking. The extensor 
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bfj connections and mutual inhibition by wijyj and wjiyi 
connections. Oscillator output is tor = ajyj-aiyi, representing 
the algebraic sum of the weighted output signal from each 
neuron, where ai and aj denote constant gains. tor  may be 
used as a motor command to drive a 1-DOF joint, where 
tor > 0 implies extensor neuron activity, and tor < 0 implies 
���
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Conventionally, the output of oscillator tor is used in the 
framework of feed forward control, where it is directly 
regarded as any manipulated quantity, such as torque, 
rate of angle, angle, etc., for each active joint in a robot. 
Here the two neurons of each oscillator generate torques 
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extensor contraction. The algebraic sum of torques at 
each neural oscillator is proportional to the torque at the 
joint during biped walking.
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the neural oscillator causes attraction if provided with an 
input having a frequency similar to its natural frequency. 
5ri"� 5ai, b, and wij of both neurons must be optimized to 
achieve regular, sustainable oscillation generating stable 
rhythmic patterns.
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The general model gives the idea about the control of 
locomotor system in the real environment. It is comparable 
with the human being or other biped exists in the real 
environment.

Figure1.2:  The General Model of Information Flow 

in Bipedal Locomotion Control System.
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of bipedal locomotion, the higher center parameters is 
comparable with the human brain which is responsible 
for generating the control signals to control overall body 
of the human being or bipeds, quadrupeds, hexapods and 
other living things exist in the real world. The rhythm 
generation network is described by a system of differential 
equations of coupled neural oscillators. The supporting 
framework, we may also call it musculo-skeletal system 
�����������������
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In robotics, the CPGs consist of networks of oscillator 
circuits coupled to the joints of the robot. CPG models 
are built by hypothesize that each joint receives signals 
by the oscillator which consists of two neuron. According 
to this hypothesis we know from the biological literatures 
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extensors, which control most joints. The use of CPGs 
to control bipedal locomotion has the advantage of being 
biologically inspired and adaptive to changes in the 
surroundings. In this work we use six Matsuoka oscillatory 
units; each oscillatory unit consists of two neurons.

In our model we consider the body above the heap as a 
point mass. Each oscillatory unit generates a torque to 
actuate the joints of the biped. Each oscillatory unit can be 
mathematically represented by the following differential 
equations. (Matsuoka et al., 1985).
tu.1 = – u1 – wy2 – bv1 + u0, (4)
tu.1 = – u1 – wy1 – bv2 + u0, (5)
t’v.1 = – v1 – y1, (6)
t’v.2 = – v2 – y2, (7)

Where ui is the inner state of the i-th neuron; yi is the 
output of the i-th neuron; vi is a variable representing the 
degree of the adaptation or self inhibition effect of the i-th 
neuron; uo is an external input which is supplied with a 
�
�������������!�������
���������!����������5����5$�����
time constants of the inner state and the adaptation effect 
respectively.

As shown in Figure 1.3, the cells 1 and 2 send signals to 
the right hip joint, the cells 3 and 4 send signals to the left 
hip joint, cells 5 and 6 send signals to the right knee joint, 
the cells 7 and 8 send signals to the left knee joint, cells 9 
and 10 send signals to the right ankle and cells 11 and 12 
send signals to the left ankle joint. 

In the existing Taga Model we add some new 
interconnections and verify through simulation that the 
proposed model is better for the higher speeds and show 
the stable and competent movement.

5.  )�#�����������2������ 
5�������"��������

In this section we simulate our model using MATLAB 
software and show the results of the simulation 
accordingly. We use fourth order Runga-Kutta method to 
solve the differential equations of neural rhythm generator, 
The ODE113 tool of the MATLAB software will be used 
to solve the equations through Runga Kutta method.  

We show the following results of our model one by one

Figure 1.3:  Proposed CPG Model for 

Locomotion in Bipeds

9���� �)/:�43	��1	���;-�"-�-�3	��	1�
<34=/�0�536-��

We show the model of bipedal locomotion through stick 
diagram which is traced for 10 second. The stick diagram 
clearly shows the stable walking of the biped model.

Figure 1.4:  The Stick Diagram of Walking 

Movement of Proposed Model
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 The Figure shown below shows the velocity of hip joint in 
the proposed model, the Figure shows the stable walking 
movement of the biped.
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Figure 1.5:  The Velocity of the Hip Joint in the 

X-Direction
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The following diagrams show the inner state activity 
of each neuron (denoted by ui) implemented in the 
oscillators. The graph shows the repetitive or rhythmic 
activity of each neuron in order to generate the rhythms 
in bipeds. 

Figure 1.6(a):  The Inner State of Neuron 1
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Figure 1.6(b):  The Inner State of Neuron 1
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The output of each oscillator as we know is used to actuate 
the joints of the bipeds and each oscillator consists of two 

neurons one is called the extensor and the other is called 
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capability to bend very similar to the human muscles. 

The Figures shown below show the output of each neuron 
implemented in the proposed model. The graph shows 
the rhythmic activity of each of the neuron. The output is 
denoted by yi in the proposed model.

Figure 1.7(a):  The Output of Neuron 1
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Figure 1.7(b):  The Output of Neuron 2
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The torque generated at each joint is used to actuate the 
joints of the biped. There is a total of six joints exist in the 
proposed model out of which two joints are at hip, two at 
knee and two at ankle for left and right positions. We can 
show this by using the graphs generated in MATLAB.  

The graphs generated show the rhythmic activity so the 
structure repeats itself and it gives the idea that the biped 
move in a stable manner.
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Figure 1.8(a):  The Torque Generated at Joint 1
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Figure 1.8(b):  The Torque Generated at Joint 2

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

40

60

time

to
r3

G�� �2	:@3�/.	��L-�M--��IE"E��	
-4�
3�
�5�	@	.-
��	
-4

In this section we compare the existing Taga model with 
the model which we have proposed. The basis for the 
�
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the higher center; we consider the values of u0 ranging 
from 5.5 to 7.0 and show by graphs that the proposed 
model is best suited for the higher values of u0 and 
approximately same for the lower values of u0. Basically 
u0 is concerned with the speed of the biped. The higher 
value of u0 indicates higher speed. 

We show the results by using stick diagrams and compare 
by using tables.

Now we summarize the results by using Table 1.1 and 
Table 1.2 for showing the stability for different values 
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instability of the two models after that we show the results 
in terms of distance travelled and time taken by both of 
the models.

Table 1.2:  Comparison Between Taga and Proposed 

Model for Different Values of u0

(Distance travelled in 10 sec.)
External Drive Input (u0)

u0 = 5.5 u0 = 6.0 u0 = 6.5 u0 = 7.0
Taga Model Dist. = 

13.50 
m

Dist. = 
14.20 
m

Dist.  
=17.10 
m

Unstable 
after 3.0 m 
distance

Proposed Model Dist. = 
13.50  
m

Dist. = 
14.20 

Dist. = 
14.80 

Dist.  = 
15.20 m

For all of these results and experiments we use the Intel 
core2 Duo processor (T 6670@2.20 GHZ, 1.18 GHZ) 
machine with 1.96 GB of RAM.

7. Discussion and Conclusion

The outcome of the examinations and experiments 
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to generate robust bipedal gait for a simulated robot by 
means of structural evolution of CPG networks.
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locomotors skills to robots is of primary importance in 
order to design robots that can carry out useful tasks 
in a variety of environments. A new approach to biped 
locomotion is CPG. A problem of the CPG approach 
is too many parameters to set for CPG. Evolutionary 
�
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	���������
�������������������
of the CPG.

Through the results of the simulation we show that 
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�������������������
(higher center parameter) than at a level the Taga model 
show the unstable walking pattern, and our model 
shows the stable walking pattern at these values. Results 
of the simulation experiments have also shown that 
interconnection coupling links newly added to the CPG 
!���� ���� ��������
�� �
�	�������� ������� ���� ��������
��
of dynamic, stable, sustained rhythmic human like 
movement with robust gait for bipedal robots at different 
walking speeds. 

The following points demonstrate that what we have 
done in the simulation experiments and the meaning of 
outcome of the experiments.
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Figure1.9:  Comparison between the Taga Model and the Proposed Model for Different Values of u0
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 1. First, we generate a walking trajectory by simulat-
ing our model in the MATLAB. It shows the stable 
walking for 10 s simulation for u0 =6.0.

 2. We show the velocity of the hip joint in the x-direc-
tion. The graph generated shows the stable walking.

 3. We show the inner state of each neuron by graph. 
The graphs show the stability and the repeatability 
of the steps. 

 4. The Figure 1.7(a-l) shows the oscillator output. The 
graph generated shows the stable, rhythmic and sus-
tained oscillations in the proposed model. 

 5. The Figure 1.8(a-f) represents the torque generated 
at each joint of the proposed model. The torque gen-
erated is used to actuate the joints of the humanoid 
robot. The graphs show the repetitive activity of the 
neural oscillators which can produce stable, rhyth-
mic and sustained oscillations.

 6. We compare the results of our proposed model with 
the existing Taga model for different values of higher 
center parameter which is denoted by u0. We see that 
the proposed model shows the stable walking pat-
tern in a range of values (5.5 to 7.0) and the existing 
Taga model show unstable walking whenever the 
value of u0=7.0 so the proposed model is best suited 
whenever the values of higher center parameter is 
high and approximately same for lower values of 
u0. The results are shown in Figure 1.9 (Comparison 
between Taga Model and Proposed model for dif-
ferent values of u0). Table 1.1, 1.2 shows the clear 
distinction between the two models.
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different parameters till date. So our next work thus is 
to focus on applying appropriate learning algorithms 
to optimize the parameters of neural oscillators toward 
���
��������������
��������������������������������

We can also propose the models that have higher number 
of links or higher number of degrees of freedom and 
implement these models to generate the stable walking 
trajectories in such a way that the implementation is also 
physically possible.
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