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Abstract

Traffic accidents are a major hazard for travellers on 
Indian roads. These are caused by a variety of reasons 
including the bad condition of roads, traffic density, lack 
of proper training of drivers, slack in enforcement of traffic 
rules, poor road lighting etc. It is further known that certain 
times of the day are more prone to traffic accidents than 
others. In this paper we investigate the distribution of 
traffic accident times using the data published annually 
by the National Crime Records Bureau (NCRB) over 
the period 2001-2014 using the tools of circular data 
analysis. It is seen that the observed distribution of the 
traffic accident times in most years is bimodal. Thus, 
several modelling strategies for bimodal distributions 
are tried which include fitting of mixture of von-Mises 
distributions and mixture of Kato-Jones distribution. It is 
seen from this analysis that the distribution of the traffic 
accident times are changing over the years. Notably, 
the proportion of accidents happening in late night has 
reduced over the years while the same has increased 
for late evening hours. Some more insights obtained 
from this analysis are also discussed.

Keyword:  Circular Statistics, Kato-Jones Distribution, 
Mixture Distribution, Traffic Accidents, Von-Mises 
Distribution

and Hyder (2006) that the application of policies and 
interventions to control traffic accidents can decrease the 
societal cost. Petrol rationing, an improvement in traffic 
enforcement, setting up of speed bumps, legislation 
and the enforcement of the use of helmets for cyclists 
and motorcyclists are examples of such interventions. 
There are many factors which can increase the risk of 
traffic accidents such as construction and maintenance 
of roads and vehicles, driver’s behaviour, speed of 
vehicle, highway characteristics, traffic characteristics, 
and weather condition. Cools, Moons, and Wets (2010) 
focussed on the effect of weather conditions on daily 
traffic intensities (the number of cars passing a specific 
segment of a road) in Belgium and the results of their 
analysis indicates that snowfall, rainfall and wind speed 
reduces the traffic density but high temperature increases 
the traffic density. Statistical modelling for predicting 
road accidents is gaining popularity in the literature on 
road safety. Kong, Lekawa, Navarro, McGrath, Cohen, 
Margulies, & Hiatt (1996) studied bicyclist accidents in 
China and Germany during 2001 to 2006 and the analysis 
shows there were similarities and differences between the 
two countries especially for the frequency, age distribution 
of the fatalities and the road environment where accidents 
occurred. The paper also suggests the importance of the 
usage of helmet and improvement of road environment 
for reduction of accidents and fatalities in China.

The time of day has an important role in traffic accidents. 
It is believed that even though the traffic density is less 
in the night compared to the day time, the number of 
accidents is more in the night time. According to studies, 
reduced visibility is an important contributor to the night 
time traffic accidents. Owens and Sivak (1993) studied 
the role of reduced visibility in night time road fatalities 
recorded by the U.S Fatal Accident Reporting Systems 
from 1980 through 1990.

Introduction

Increasing incidents of road traffic accidents pose a 
major societal problem in India and other developing 
countries. According to Aderamo (2012), road traffic 
accidents are decreasing in developed countries and 
increasing in developing nations. Many researchers have 
paid attention in determining the factors that significantly 
affect injury. It is mentioned in research by David 
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Plainis, Murray, and Pallikaris (2006) compared the 
road injury data under dim and bright conditions for two 
EU countries and showed that low luminance is likely 
to contribute to the disproportionate number of road 
traffic injuries occurring at night. According to them, the 
presence of road lighting leads to substantial decrease in 
the severity of injuries in both countries, despite the fact 
that they have dramatically different injury rates.

Data	
The yearly data for the period 2001-2014 are obtained 
from the reports entitled Accidental Deaths and Suicides 

in India (ADSI) published by National Crime Records 
Bureau, India. The data consist of number of traffic 
accidents at different times of the day at national level in 
53 Indian cities. The given data are grouped in 3 hourly 
time intervals 0 – 3am, 3 – 6 am, 6 – 9 am, 9-12 noon, 
12-3 pm, 3-6 pm, 6-9 pm and 9-12 midnight aggregated 
over the years. The snapshot of the final data retrieved 
from http://ncrb.gov.inis given in Table 1. 

Table 1:  Snapshot of Data. Each Figure Indicates the Number of Accidents in the Specified Time Interval for a 
given Year

Time of occurrence 2001 2002 2008-2012 2013 2014

0-3 23869 23894 - - - 28332 26068
3-6 30949 28485 - - - 35385 32554
6-9 41612 41110 - - - 52771 52279
9-12 50293 51904 - - - 67224 69042
12-15 47291 48794 - - - 65974 68918
15-18 49925 52026 - - - 73141 77830
18-21 46663 48287 - - - 74411 76334
21-24 33118 34934 - - - 45763 47873
Total 323720 329434 - - - 443001 450898

	
We map each accident time in 24-hour period onto a point 
on the unit circle i.e., an angle between 0 to 2π radians. 
Every 45 degrees (π/4 radians) on the circle denotes 3 
hours in real time. 03:00 a.m. is mapped to 0 degree on the 
circle. The histogram of the time of accident occurrence 
for the years 2001, 2008 and 2014 are given in the Fig. 1.
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<Figure head> Fig. 1: Histogram of the Time of Traffic Accidents for the Years 
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Circular Data

Circular data are data measured in angles and occur in 
a variety of fields. They are commonly summarised as 
locations on a unit circle or as angles over a 360°or  2p 
radians range. Angular data arise in two ways, natural 
angles and observations which can be converted to angles. 
In this paper, we are mainly interested in the time of the 
day when the accident occurred. The time of accident is 
converted to an angle in the following manner. Let x be the 
time of the day recorded in hours. Then the corresponding 

angle would be x
24

 * 2p
 
radian. For example, if an accident 

occurred at 4 a.m., then the corresponding angle would be 
4
24

 * 2p = p
3

radians.

The purpose of this work is to analyse Indian road 
traffic accident times data using circular data analysis. 
Recently several authors have used Circular Statistics 
to analyse and model distributions of random variables 
that are cyclic in nature. Brunsdon and Corcoran (2006) 
used circular statistics to analyse time patterns in crime 
incidence. They analysed a data set related to the reports 
of criminal damage in the city of Cardiff, Wales during 
the period July 1999 to June 2001. The circular plot of the 
data (see Fig. 4 of Brunsdon & Corcoran, 2006) shows 
a bimodality in which the frequency of reporting crimes 
peaks around 11 PM and 10 AM rounded to the nearest 
hour. Faggian, Corcoran, and McCann (2013) introduced 
the use of circular statistics to study the interregional 
graduate migration flows in Britain. Corcoran, Chhetri, 
and Stimson (2009) applied circular statistics to analyse 
journey to work data. They calculated the direction and 
frequency of each journey using bespoke tools developed 
in a Geographic Information System (GIS) environment. 
They used the geographical angle of journey from an 
origin to a destination as a central variable for analysis 
which is circadian in nature (see Fig. 1 of Corcoran 
et al., 2009). The application of circular statistics in 
particular circular mean direction of travel and circular 
spread gives an indication of the modality direction of the 
commuter from any movements given origin zone. Gill 
and Hangartner (2010) studied an interesting application 
of circular data in political science. They developed a 
circular regression model for terrorism events.

Circular Distributions

The most popular circular distributions used in applied 
work is the von-Mises (vM) or Circular Normal 
distribution (CN), which is described in sub-section below. 

However, there are many alternative circular distributions 
and a comprehensive account of the properties of these 
distributions can be found in Mardia and Jupp (2000) 
and Jammalamadaka and SenGupta (2001). Recently 
an extension of the Circular Normal distribution known 
as Kato-Jones distributions is finding increasing use 
in applied work. We discuss these distributions in sub-
sections below.

Circular Normal (von-Mises) Distribution 

Circular Normal (CN) distribution plays a central role in the 
analysis of circular data. This distribution was introduced 
as a statistical model by von-Mises (1918). A circular 
random variable Θ  is said to have a CN distribution with 
mean direction parameter m and concentration parameter 
κ  if it has the probability density function (p.d.f.)
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Where (.)0I  is the modified Bessel function of order 0. 
This distribution is symmetric about µ  and unimodal. 
We will denote this distribution as CN ( , )m k . Another 
interesting property of CN ( , )m k  distribution is that, 
for sufficiently large κ , the CN distribution can be 
approximated by a linear normal distribution with mean  

m and variance 
κ
1

 .

Kato-Jones (KJ) Distributions	

Kato and Jones (2010) proposed a family of four 
parameter distributions on the circle that contains von-
Mises and wrapped Cauchy distributions as special cases. 
This family of distributions is derived by transforming 
von-Mises distribution through Mobius transformation.
The density function of this distribution is
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such that 0 2£ <  m n p, , ,   and  k > £ <0 0 1r .

A three parameter family of distributions can be derived 
as a special case when 0=ν  or πν = . In this case the 
above four parameter distribution reduces to
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The distribution is symmetric about π+µµ=θ  and 

and is unimodal when 10 <≤ r . The parameter µ  
is the directional mean. Symbolically, we will write

q m k~ ,KJ  , r( ) . The above model involves the von-

Mises )0( =r , wrapped Cauchy )0( =κ  and uniform 

distributions k = =( )r 0  as special cases. As k Æ • , the 

Kato-Jones distribution tends to N ,   rm w( )  where the 

standard deviation wr

1 r

1 r
= -

+
. 

Finite Mixture of Distributions

Finite mixtures of distributions (FM) has seen many 
applications in the linear data context. Some applications 
in the circular data context have also been reported 
in the literature. A random variable X is said to follow 
a k-component mixture distribution of densities 

kfff ,...,, 21 if its p.d.f. is of the form

( )xfxp j

k

j
j∑

=

=
1

)( π

where jπ s is a set of probabilities also known as mixing 

weights such that 1
1

=∑
=

k

j
jπ  and ( )xf j , k,...,2,1j = are 

the component densities.An up-to-date brief overview of 
the developments in FM models can be seen in Zhang and 
Huang (2015).Roy et al. (2012) designed mixture model 
based colour image segmentation in the LCH colour space 
using a Circular- Linear distribution. Mooney, Helms, and 
Jollife (2003) analysed Sudden Infant Death Syndrome 
(SIDS) data for the UK from 1983 to 1998 and in their 
study, they pointed out that for some years, there seems to 
be more than one mode. Later Jiang (2009) analysed this 

data set by fitting a von-Mises distribution and a mixture 
of two von-Mises distributions and reported that for most 
years the data could be fitted using a mixture of two von-
Mises distributions. Jiang (2009) also analysed the fatal 
traffic crash time data in the United States in 2007 and 
showed that for Washington and the District of Columbia 
a mixture of two von-Mises distributions fitted the dataset.

Modelling Traffic Accident Times

In this paper we model the time of traffic accidents data 
using a mixture of two circular distributions. We consider 
two models 

(1) a two component mixture of Circular Normal 

distributionsa m k a m k  CN CN1 1 2 21, ,( ) + -( ) ( )  and

(2) a two component mixture of Kato and Jones 

distributionsa m k a m k  KJ r KJ r1 1 2 21, , , ,( ) + -( ) ( ) .

In both these cases we restrict 1µ in [ )π,0 and 2µ  

in [ )ππ 2, . Let fCN q m m k k a; , , , ,1 2 1 2( )  be the 
pdf of mixture of Circular Normal distributions

a m k a m k    CN CN1 1 2 21, ,( ) + -( ) ( ) . We define
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Note that jp ’s(j=1,…,8) depend on the unknown 

parameters ακκµµ ,,,, 2121 . Now to estimate the 
unknown parameters we apply the minimum chi-square 
method (Berkson, 1980) which is briefly discussed below. 
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the estimates of the parameters we minimize the 

function g  subject to the conditions 0 21 2£ <m m p, ,

k k a1 20 0 0 1> > < <, ,  . Since this function g  is 
difficult to minimize analytically, we adopt a direct 
numerical minimisation approach using the function 
DEOptim in R (Mullen, Ardia, Gil, Windover, and Cline, 
2011).Fig. 2(a)–(c) show estimated parameters of mixture 
of von-Mises distribution.
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Fig. 3 (d):  Estimated Parameters of alpha for year 
2001-2014

Using these estimated parameters, we calculated the 
proportion of accidents happening in certain times of 
the day from year 2001-2014 which has been shown in  
Table 2. 

Table 2:  Proportion of Accidents Happening in Certain Times of the Day from Year 2001 to 2014 using 
Mixture of Circular Normal Distributions(CN) and Mixture of Kato-Jones (KJ) Distributions

Time of occurrence
Year Model 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24

2001 Actual 0.073 0.096 0.129 0.155 0.146 0.154 0.144 0.102
vM 0.076 0.093 0.131 0.154 0.149 0.153 0.145 0.100
KJ 0.079 0.093 0.128 0.153 0.147 0.155 0.147 0.097

2002 Actual 0.073 0.086 0.125 0.158 0.148 0.158 0.147 0.106
vM 0.073 0.085 0.128 0.155 0.151 0.157 0.148 0.103
KJ 0.076 0.084 0.122 0.158 0.151 0.155 0.149 0.103

2003 Actual 0.073 0.092 0.124 0.156 0.144 0.157 0.148 0.106
vM 0.075 0.089 0.127 0.149 0.147 0.156 0.152 0.105
KJ 0.077 0.090 0.128 0.149 0.146 0.158 0.149 0.102

2004 Actual 0.070 0.088 0.122 0.160 0.144 0.159 0.151 0.106
vM 0.072 0.086 0.131 0.154 0.146 0.156 0.151 0.104
KJ 0.075 0.084 0.125 0.158 0.146 0.158 0.152 0.103

2005 Actual 0.073 0.089 0.122 0.161 0.146 0.163 0.146 0.101
vM 0.073 0.087 0.129 0.152 0.153 0.161 0.145 0.101
KJ 0.076 0.082 0.123 0.159 0.149 0.165 0.147 0.098

2006 Actual 0.077 0.090 0.199 0.150 0.144 0.157 0.154 0.110
vM 0.078 0.088 0.121 0.146 0.148 0.156 0.155 0.109
KJ 0.080 0.087 0.118 0.149 0.147 0.154 0.157 0.106

2007 Actual 0.077 0.086 0.116 0.150 0.147 0.157 0.153 0.114
vM 0.079 0.083 0.119 0.147 0.147 0.156 0.154 0.113
KJ 0.078 0.085 0.118 0.149 0.150 0.151 0.156 0.112

2008 Actual 0.075 0.084 0.118 0.148 0.149 0.161 0.155 0.112
vM 0.076 0.079 0.123 0.146 0.145 0.162 0.157 0.112
KJ 0.079 0.084 0118 0.146 0.149 0.162 0.155 0.107

2009 Actual 0.069 0.083 0.115 0.152 0.146 0.163 0.152 0.120
vM 0.075 0.078 0.116 0.149 0.152 0.159 0.158 0.114
KJ 0.076 0.079 0.119 0.151 0.150 0.159 0.153 0.111
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Time of occurrence
Year Model 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24

2010 Actual 0.068 0.088 0.121 0.151 0.145 0.160 0.161 0.107
vM 0.071 0.084 0.124 0.149 0.145 0.158 0.162 0.107
KJ 0.073 0.084 0.119 0.153 0.146 0.157 0.165 0.103

2011 Actual 0.067 0.085 0.118 0.152 0.150 0.166 0.160 0.102
vM 0.069 0.083 0.121 0.149 0.151 0.165 0.161 0.101
KJ 0.076 0.093 0.131 0.154 0.149 0.152 0.145 0.100

2012 Actual 0.063 0.078 0.118 0.153 0.148 0.167 0.166 0.107
vM 0.063 0.075 0.121 0.152 0.149 0.167 0.168 0.105
KJ 0.067 0.075 0.114 0.151 0.149 0.172 0.169 0.102

2013 Actual 0.064 0.080 0.119 0.152 0.149 0.165 0.168 0.103
vM 0.063 0.078 0.119 0.151 0.150 0.164 0.171 0.103
KJ 0.067 0.080 0.119 0.148 0.146 0.166 0.172 0.102

2014 Actual 0.058 0.072 0.116 0.153 0.153 0.173 0.169 0.106
vM 0.059 0.070 0.117 0.153 0.153 0.171 0.171 0.104
KJ 0.061 0.068 0.114 0.154 0.155 0.169 0.172 0.106

It can be seen from Table 2 that the proportion of accidents 
happening in late night (9pm – 3am) has reduced over the 
years (0.175 in 2001 to 0.164 in 2014) while the same has 
increased for late evening hours (6-9pm) which has been 
captured by both the models under consideration. We use 
the Schwarz Information Criterion (SIC) (Schwarz,1978) 
to choose the best model among these two. The SIC is 

defined as )nln(kLlog2SIC
^

+





θ−= , where 






 ^
θL  

is the likelihood function for the model evaluated at 

the estimated parameter value q� , k  is the number of 
parameters and n is the sample size. The likelihood is 
calculated for the two models and the corresponding SIC 
year wise values are given in Table 3 for the years 2005 
- 2009.

Table 3:  SIC for Mixture of Von-Mises and Mixture 
of Kato-Jones Distributions from 2005 to 2009

Year SIC (Mix vM) SIC (Mix KJ)

2005 569.3544 365.9092
2006 277.066 258.6512
2007 252.944 232.7688
2008 186.6506 197.3286
2009 820.9194 823.3113

We see that in some of the cases the SIC is minimum 
for mixture of Kato-Jones distributions whereas in 

some other cases it is minimum for mixture of von-
Mises distributions. Since the family of two component 
mixture of Kato-Jones distributions contains the family 
of two component mixture of von-Mises distributions, 
we consider the former for modelling the time of the 
accidents.

Change Point Problem

The change point problem is introduced in statistics 
by Page (1955) in the context of statistical quality 
control. It has been discussed quite extensively in the 

literature for linear data. Let nxxx ,...,, 21  be independent 
observations. It is often of interest to know if there exists 

a(unknown) point 1-ns1  ; ≤≤s  such that sxxx ,..., 21

are independently and identically distributed (i.i.d) 0F  

and nss xxx ,..., 21 ++ are i.i.d. 1F  ( 10 FF ≠ ). Here s is 
called the change point of the data. This formulation is 
usually referred to as at most one (or single) change point 
problem (AMOC). If n =s then all observations are from

0F  or we say that there is no change point. In change 
point problem, one is interested to test 

0
'

i0 F i.i.d are  : sxH  against the alternative 

H1 : there exist s, 1 £ s £ n – 1, such that x1, x2, K, Xs
are i.i.d. F0 and xs + 1, xs+2, K, xn are i.i.d. F1
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Here 0,1i , =iF may be known or unknown and may 
contain one or more unknown parameters.

Lombard (1986) proposed rank based non-parametric 
procedures to test the presence of change point 
in a sequence of angular observations. Ghosh, 
Jammalamadaka, and Vasudaven (1999) considered a 
generalised likelihood ratio test procedure and a Bayes 
procedure for change-point problems of the mean 
direction of the CN distribution. Grabovsky and Horvath 
(2001) suggested a modified procedure to detect changes 
in circular data. Sengupta and Laha (2008a) introduced 
a likelihood integrated method for exploratory graphical 
analysis of change point problem with directional data. 
Sengupta and Laha (2008b) also discussed the problem 
of detecting change in the mean direction of the circular 
normal distribution when the concentration parameter is 
unknown using Bayesian analysis.

Chen and Gupta (1997) approached the change point 
problem as a model selection problem. Specifically they 
consider the models

0M  : The accident time distribution is 0F for all the years 
against

sM : The accident time distribution is 0F for the first s  

years and is 1F for the years 1+s  to n .

They then propose to use SIC to choose the best 

model among these models. We assume 0F  belongs to 
the family of two-component mixture of Kato-Jones 

distribution a m k a m k KJ   1 1 2 21b br KJ r, , , ,( ) + -( ) ( ) , 

where b1µ  and b2µ are the mean directions of the two 
component Kato-Jones distributions before change 

point occurred. We also assume that 1F  is a member of 

the above family but with different parameters. i.e., 1F  

is a m k a m k KJ   1 1 2 21a ar KJ r, , , ,( ) + -( ) ( ) where a1µ  

and a2µ are the mean directions of the two component 
Kato-Jones distributions after the change point. Since 

there are unknown parameters in both 0F and 1F  we 
only investigate the presence of change point in the 
period 2005 to 2009. Following Chen and Gupta (1997), 
we use the minimum SIC criterion for choosing the 

best model amongst M M0 14,..., . To compute the SIC  

for 0M we need to compute the likelihood 0L . It is not 

difficult to observe L
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and
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q m m k k a; , , , , ,1 2 1 2( )  are the p.d.f. of mixture 

of Kato-Jones distributions before and after the change 
point respectively.



34      International Journal of Business Analytics and Intelligence	 Volume 5 Issue 1 April 2017

Table 4 gives SIC of the models we considered for year 
2005-2009. 

Table 4:  Model for 2005-2009 and the corresponding 
SIC values

Model SIC KJ

0M 13282.21

5M 11716.88

6M 10755.03

7M 13286.83

8M 10743.92

9M 10787.72

It can be seen from Table 4 that M8 has the lowest SIC 
which indicates that there is a change point and the year 
of the change is 2008. The estimated parameters of the 
mixture of Kato-Jones distributions for the years 2001-
2008 are m1b = 1.82 radian (104.19°), m2b = 4.13 radian 
(236.62°), k1 = 0.6, k2 = 1.42, r = 0.01 and a = 0.64, and 
the same for the years 2009 -2014 are m11 = 1.98 radian 
(113.68°), m2a = 4.16 radian (238.36°), k1 = 0.6, k2 = 
1.42, r = 0.01 and a = 0.64. Thus it can be observed that 
the accident time during the years 2001-2008 has modes 
at 10:34am and 7:18pm, and the same during the years 
2009-2014 are at 10:58am and 7:29pm.

Conclusion
The observed distribution of the traffic accident times in 
India for most years in the period 2001-14 is seen to be 
bimodal. This bimodal distribution has been modelled using 
a two component mixture of Kato-Jones distributions. The 
distribution is seen to be a decent fit to the observed data. 
It is further seen that the distribution of the traffic accident 
times are changing over the years. Notably, the proportion 
of accidents happening in late night has reduced over the 
years while the same has increased for late evening hours. 
A formal change point analysis indicates the presence of a 
change point in the year 2008.

References
Aderamo, A. J. (2012). Assessing the trends in road traf-

fic accident casualties on Nigerian roads. Journal of 
Social Sciences, 31, 19-25.

Berkson, J. (1980). Minimum Chi-Square, not maximum 
likelihood. Annals of Statistics, 8(3) , 457-487. 

Brunsdon, C., & Corcoran, J. (2006). Using circular sta-
tistics to analyse time patterns in crime incidence. 
Computers, Environment and Urban Systems, 30, 
300-319.

Chen, J., & Gupta, A. K. (1997). Testing and locating vari-
ance changepoints with application to stock prices. 
Journal of the American Statistical Association, 92, 
(438), 739-747.

Cools, M., Moons, E., & Wets, G. (2010). Assessing the 
impact of weather on traffic intensity. American 
Meteorological Society, Weather, Climate and 
Society, 2, 60-68.

Corcoran, J. , Chhetri, P., & Stimson, R. (2009). Using 
circular statistics to explore the geography of the 
journey to work, Progress in Regional Science, 
88(1), 119-132.

David, M. B, & Hyder, A. A. (2006). Modelling the cost 
effectiveness of injury interventions in lower and 
middle income countries: Opportunities and chal-
lenges. Cost Effectiveness and Resource Allocation, 
4, 2, 1-11.

Faggian, A., Corcoran, J., & McCann, P. (2013). Modelling 
geographical graduate job search using circular sta-
tistics, Papers in regional Science, 92(2), 329-343.

Ghosh, K., Jammalamadaka, S. R., & Vasudaven, M. 
(1999). Change-point problems for the von-Mises 
distribution. Journal of applied statistics, 26(4), 
423-434.

Gill, J., & Hangartner, D. (2010). Circular data in Political 
Science and how to handle It, Political Analysis, 18 
(3), 316-336.

Grabovsky, I., & Horvath, L. (2001). Change-point de-
tection in angular data.  Annals of the Institute of 
Statistical Mathematics, 53(3), 552-556.

Jammalamadaka, S. R., & SenGupta, A. (2001). Topics in 
circular statistics. Singapore: World scientific.

Jiang, Q. (2009). On fitting a mixture of two von-Mis-
es distributions, with applications. M.Sc Project, 
Department of Statistics and Actuarial Science, 
Simon Fraser University, Canada.

Kato, S., & Jones, M. C. (2010). A family of distributions 
on the circle with links to, and applications arising 
from mobius transformation. Journal of American 
Statistical Association, 105 (489), 249-262.

Kong, L. B., Lekawa,M., Navarro, R. A,. McGrath, J., 
Cohen, M., Margulies, D. R., &Hiatt, J. R. (1996). 
Pedestrian-motor vehicle trauma: an analysis of in-



Distribution of Traffic Accident Times in India - Some Insights using Circular Data Analysis      35

jury profiles by age. Journal of the American College 
of Surgeons, 182, 17-23.

Lombard, F. (1986). The change-point problem for angu-
lar data: A nonparametric approach. Technometrics, 
28, 391-397.

Mardia, K.  V., & Jupp, P. E. (2000). Directional statistics. 
Chichester,Wiley.

Mooney, J. A., Helms, P. J., & Jollife, I. T. (2003). 
Fitting mixtures of von-Mises distributions: A case 
study involving sudden infant death syndrome. 
Computational Statistics & Data Analysis, 41, 
505-513.

Mullen, K. M., Ardia, D., Gil,D. L., Windover, D., & 
Cline, J. (2011) . DEoptim: An R package for global 
optimization by differential evolution. Journal of 
Statistical Software, 40(6), 1-26.

Owens, D. A., & Sivak , M. (1993). The role of re-
duced visibilityin night time road fatalities. Report 
no. UMTRI-93-33, University of Michigan. 
Transportation Research Institute, U.S.A.

Page, E. S. (1955). A test for a change in a parameter 
occurring at an unknown point. Biometrika, 42, 
523-527.

Plainis, S, Murray, I. J., & Pallikaris, I. G. (2006). 
Injury prevention, 12, 125-128. doi: 10.1136/
ip.2005.011056.

Roy, A., Parui, S. K., & Roy, U. (2012). A mixture mod-
el of circular-linear distributions for color image 
segmentation. International Journal of Computer 
Applications (0975 - 8887), 58(9), 6-11.

Schwarz, G. (1978). Estimating the dimension of a mod-
el. The Annals of Statistics, 6, 461-464.

Sengupta, A., & Laha, A. K. (2008a). A likelihood in-
tegrated method for exploratory graphical analy-
sis of change point problem with directional data. 
Communications in statistics. Theory and methods, 
37(11-12), 1783-1791.

Sengupta, A., & Laha, A. K. (2008b). A Bayesian analy-
sis of the change-point problem for directional data. 
Journal of Applied Statistics, 35(6), 693-700.

von Mises, R. (1918). UJber die ‘Ganzzahligheit’ der 
Atomgewichte und vermandteFragen. Phys. Z. 19, 
490-500.

Zhang, H., & Huang, Y. (2015). Finite mixture models 
and their applications: A review. Austin Biometrics 
and Biostatistics, 2(1), 1013, 1-6.


