
Abstract

Research in database management system results in
new technology and opportunities to researchers. As a
result of this researcher have developed many solutions
to real time applications and advancement in hardware’s.
Database systems with production rules are referred to
as active database systems and the field of active da-
tabase systems has indeed been active. In this article
we emphasize on evolution of active database system,
its architecture and challenges faced by research com-
munity.

Keywords: Active Rules, Triggers, Rule Execution

An Overview of Active Database: Model,
Architecture and Challenges
Gambhir Halse*, Malakappa Shirdhonkar**

* Associate Professor, Department of Computer Science and Engineering, KLE Dr. M. S. Sheshgiri College of Engineering
and Technology, Belgaum, Karnataka, India. E-mail: g_halse@rediffmail.com

** Professor, Department of Computer Science and Engineering, BLDE’s College of Engineering and Technology, Bijapur,
Karnataka, India. E-mail: ms_shirdhonkar@rediffmail.com

Article can be accessed online at http://www.publishingindia.com

Introduction

Early generation database system stored database
passively, and perform only actions explicitly specified
by a user transaction [1]. In contrast active database
system not only stores data, but also carries out actions in
response to events, such as changes in data. Incorporation
of active rules in database is a need of database application
development. Active rule specify when, and what action
to carry out [2][3]. An active database system is a database
system which detects situations of interest, evaluates the
condition when they occur; and if the condition is true,
then executes an action in timely manner [4]. In contrast,
a conventional passive database system only executes
queries and transaction explicitly submitted by the user or
an application program.

The paper is organized as follows: section 2 states the
basic model of active database systems, and describes

the structure of active rules. Section 3 presents the
architecture of active database systems. Section 4 focuses
on issues and challenges of active database; finally,
section 5 concludes the paper.

Basic Event-Condition-Action Model

Active database is conventional database in which active
rules are incorporated[1]. The basic concept on which an
ADBMS (Active Data Base Management System) relies
is the concept of ECA, or active rules (ECA stands for
Event-Condition-Action) needs to be considered. In active
database when any event (EVENT) occurs and some
conditions (CONDITION) satisfied then some action
(ACTION) initiated automatically. These actions are
performed without any need for the user’s intervention [2]
[5]. At the conceptual level people often talk about ECA
rules; these rules are mostly implemented using triggers
in some concrete ADBMS The event-condition-action
model for active rules is widely used. The general form of
rule in this model is as follows:
 on event,
 if condition,
 then action.

Changes to the database such as insertion, deletion, and
updates to tuples are modeled as events. In an object
oriented database, an event could be an action such as
creating or deleting of an object, or execution of a method
on the object. When an event occurs, one or more rules
may be triggered. The event is called the triggering event
of the rule. Once a rule is triggered, the conditions of

An Overview of Active Database: Model, Architecture and Challenges 35

the rules are checked. If the conditions are satisfied, the
actions of the rules are executed.

Active rules can be used for diverse purpose [6]. An
example application is alerting, where the rules monitors
the system and notify the administrator or user, if an
unusual event has occurred. Active rules can also be used
for checking integrity constraints. Another example of
the use of active rule is in maintenance of derived data,
such as indices and materialized views. If a view has
been materialized (i.e. captured and stored) it needs to be
updated in response to changes to the database relations
on which it is defined. The actions needed for keeping the
view up-to-date can be encoded as active rules.

The syntax for active rule not yet standardized and may
differ across system. The trigger facility is an example
of active rule facility [7]][8]. Rules are typically stored
in the databases, just like regular data, so that they are
persistent and accessible to all database operation.
Database system in which triggers not supported, polling
of database is carried out. Polling is a process periodically
queries (polls) the database to see whether any event of
interest has been occurred and then carries out necessary
condition checks and actions.

A trigger can be thought of as a ‘daemon’ that monitor
a database, and is executed when the database is
modified in a way that matches the event specification
[8]. Why triggers can be hard to understand? Triggers
offer a powerful mechanism for dealing with changes
to a database, but they must be used with caution. The
effect of a collection of triggers can be very complex and
maintaining an active database can become very difficult.
Often a judicious use of integrity constraint can replace
the use of triggers.

In an active database system, when the DBMS is about to
execute a statement that modifies the database, it checks
whether some trigger is activated by the statement. If
trigger is activated then it evaluates its condition part, if
satisfied then corresponding action is performed[10].

Architecture of Active Database

The architecture of rule execution model shown in Fig.1
specifies how the set of rules are treated at run-time.
While the execution model of rule system closely related
to the underlying DBMS [10].

Fig. 1: Basic Architecture of Active Database Rule
Execution

 RULE EXECUTION

EVENT OCCURRENCE

TRIGERRING RULE

RULE EVALUATION

RULE SELECTION

 SOURCE

There are number of phases in rule execution:
1. The signaling phase refers to event occurrence

caused by event source.
2. The triggering phase takes the event occurred and

triggers the corresponding rule from rule base.
3. The evaluation phase evaluates the condition of trig-

gered rule. Rule conflict set is formed from all rules
associated with event occurred.

4. The scheduling phase indicates how the conflict set
processed.

5. The execution carried with action specified in se-
lected rule.

The phases are not necessarily executed contiguously but
depends on the Event-Condition (EC) and Condition-
Action (CA) coupling modes. EC coupling mode indicates
when the condition is evaluated relative to the event that
triggers the rule. CA coupling indicates when the action is
to be executed relative to the evaluation of the condition.

The options for coupling modes supported are:
a) Immediate in which case condition is evaluated im-

mediately after the event.
b) Deferred in which the condition is evaluated in the

same transaction but not necessarily at the earliest.
c) Detached in which the condition is evaluated within

a different transaction from the event.

36 International Journal of Knowledge Based Computer Systems Volume 3, Issue 2, December 2015

Challenges in Active database

In this section we analyze the realities of active database
system in solving the real life problems [11]. We
decompose the problems found with active DBMSs into
following categories.

∑	Challenges concerned with the design of active
applications.

∑	Challenges concerned with security, reliability, and
unpredictability.

∑	Challenges in addressing the performance problems.

Challenges in Active Applications

A first challenge is the lack of standards for trigger
languages in the existing database. First, condition-action
rules are usually not directly expressible. This problem is
emphasized by restrictions of the trigger language, such
as the event part of a rule must be associated with a single
relation, or a disjunction of elementary events (even for
the same relation) is not allowed. Coding a rule, such as
“if an employee earns more than his manager then notify”,
may entail the definition of many triggers because one
trigger is needed for every data modification event capable
of violating the database constraint. The proliferation
of rules renders more difficult the verification of their
correctness. Most development guides recommend not to
use triggers for coding integrity constraints that can be
expressed by means of assertions in the data definition
language.. Some degree of automatic generation is
already available in several commercial database design
tools. In many applications, we found business rules that
could not be implemented in the trigger language because
of the restrictions imposed to the event part

Challenges in Security Applications

Many researcher and database developers are often
reluctant to use active DBMS facilities because they
consider triggers as insecure, unreliable and unpredictable
[9]. In this respect, their reaction is the same as with.
Production rules in expert systems or knowledge base
systems because they wonder how a set of individual,
isolated rules will interact with each other and with other
relevant application programs in concrete situations. With

active rules, this issue is more challenging because these
rules “act on their own” and may directly affect the real
world [12]. For mission-critical financial applications
where triggers may automatically execute stock deals,
influence the structure of large portfolios or rate customers
as non-credit- worthy, this attitude is well founded. The
same is true for other applications like plant control,
patient care or aviation systems. Without guarantee of
correctness and predictable, unambiguous behavior,
triggers will not be used in these fields.

Challenges in Database Performance

One of the main reasons that make researchers and
developer reluctant to use triggers in the development
of large applications is their anxiety about performance
[13]. This feeling is consolidated by recent experiences
conducted with the development of applications, that
involve several hundreds of triggers on various DBMS
platforms. When developers compare the performance
of the same application coded with and without triggers,
they observe that the trigger-based version runs slower
than the without trigger system. As a consequence, many
researchers suggested not to use triggers intensively
although they are convinced by the functionality. This
disquiet deserves some analysis. A natural question is
to wonder if the immaturity of the implementations of
triggers suffices to explain such a gap of performance. In
fact, the overhead taken by the binding between events
and rules, and the retrieval of rules remains quite smalls.
Another issue is the lack of experience of developers in
the programming of triggers [14].

Conclusion

Conventional database system stores the information
passively. Now a day incorporation of active rules in
active database is required to meet the challenges in the
real world scenario. Active database system supports
mechanism that enables them to respond automatically to
the events that are taking place either within or outside the
database itself. This paper discusses model, architecture
and challenges in the field of active database.

REFERENCES

Ramakrishnan, J., & Gehrke, R. (2000). Database man-
agement system (2nded) McGraw Hill.

An Overview of Active Database: Model, Architecture and Challenges 37

CODASYL Data Description Language Committee.
(1973). CODASYL Data Description Language:
Journal of Development.

Dayal, U. (1988). HiPAC: A Research Project in Active,
Time-Constrained Database Management, Interim
Report. Technical Report XAIT-88-02, Xerox
Advanced Information Technology.

Bouazir, T., & Wolski, A. (1997). Applying Fuzzy events
to approximate reasoning in active databases. In
Proceedings of 6th IEEE International Conference
on Fuzzy System.

Stonebraker, M. (1986). A rule manager for relational da-
tabase systems. The POSTGRES Papers, University
of California, Berkley.

Dayal, U., Buchmann, A., & McCarthy, D. (1988). Rules
are objects too: A knowledge model for an ac-
tive, object-oriented database system. Advances in
Object- Oriented Database Systems, 334, (129-143).

Eswaran, K. P., & Chamgerlain, D. D. (1975). Functional
specifications of a subsystem for data base integrity.
Proceedings 1st International Conference on Very
Large Data Bases.

Eswaran, K. P. (1976). Specifications, Implementations,
and Interactions of a Trigger Subsystem in an
Integrated Data Base System. IBM Research Report.

Bouaziz, T., & Wolski, A. (1996). Incorporating fuzzy
inference into database triggers. Technical Report,
VTT information Technology.

Hsu, M., Ladin, R., & McCarthy, D. (1988). An execu-
tion model for active database management systems.
Proceedings 3rd International Conference on Data
and Knowledge Bases.

Kumar, M. (2012). Issues and challenges in database re-
search. Global Journal of Computer Science and
Technology, Software and Data Engineering, 12(11),
16-20.

Viana, S. (2007). A rule repository for active database
systems. CLEI Electronic Journal, December, 10(2),
1-10.

 Manola, F., & Dayal, U. (1986). PDM: An object-oriented
data model. Proceedings of International Workshop
on Object-Oriented Database Systems.

Saygin, Y., & Ulusoy, O. (2001). Automated construction
fuzzy event sets and its applications to active da-
tabases. IEEE Transaction on Fuzzy systems, 9(3),
450-460.

