
Abstract: The financial services industry had always been a
data intensive industry. From insurance to capital markets
the role of data has been pivotal for a lot of applications like
financial modeling, portfolio optimization, asset/liability
matching, fraud detection and risk modeling. The big data
revolution has provided a lot of options for innovation
and improved efficiency in this domain. At the same time,
a new set of challenges has been thrown up which need to
be overcome for future growth and sustainability in the
financial services industry. In recent times the securities
trading market has undergone dramatic changes resulting
in the growth of high velocity data. Velocity being one of
the Vs of Big data, presents a unique set of challenges to the
capital markets. The tradition approach of using Business
Intelligence (BI) is no longer scaling especially in terms
of the velocity of data. During the previous decade most
of the firms in the capital markets have made significant
investments in their ability to collect, store, manage and
analyze (to some extent) large amount of data. Based on
the benefits offered by big data analytics, financial services
firms are now able to provide highly personalized and real
time location based services rather than only product-based
services which was possible earlier. The rise of electronic
trading and the availability of real time stock prices and
real time currency trading make it necessary to have
real time risk analysis. Market participants who have
the ability to analyze the data in real time will be able to
garner a disproportionate part of the available profit pool.
The availability of huge amounts of financial data, high
rate of data generation, and the heterogeneity of financial
data make it difficult to capture, process and perform
timely analysis of data. Traditional financial systems are
not designed to cope with a wide variety of data, especially
unstructured data from Twitter, news, social media, blogs
etc which affect market dynamics in real time. Traditional
data warehousing and BI techniques like extract, transform
and load (ETL) take a huge amount of time (often days) to
process the large amounts of data and are thus not receptive
to real time analytics.

This paper discusses the implication of the rise of big data
and especially that of high velocity data in the domain
of High Frequency Trading (HFT), a growing niche of
securities trading. We first take a brief look at the intricacies
of HFT including some of the commonly used strategies used
by HFT traders. The technological challenges in processing

Framework to Process High Frequency
Trading Using Complex Event Processing

A. Acharya1, N. S. Sidnal2
1KLS GIT, Gogte Institute of Technology, Belagavi, Karnataka, India. Email: aacharya@git.edu

 2KLE MSSCET, Belagavi, Karnataka, India. Email: sidnal.nandini@gmail.com

I. HIgH Frequency TradIng

The knowledge economy is in the process of continuous
automation. The tasks which were considered specialized
and were done by highly skilled people are now increasingly
being done by intelligent systems. Dealing with big data and its
associated analytics is no longer a niche area; its applications
and impact are already being felt in the broader economy. In this
paper we take a look at High Frequency Trading (HFT) which
has become an important part of the knowledge economy. HFT
illustrates a very important V of big data i.e. Velocity. The paper
begins with a brief discussion on big data and the challenges in
its processing and analytics. This discussion will focus on the
aspect of velocity of big data processing.

There has been a trend towards greater transparency and
efficiency in stock markets. Over the past few years the trading
of financial securities has been significantly impacted by the
advent of technology. It started with the replacing of human
intermediaries on the stock market floor by electronic trading
using limit orders. This led to the development of algorithms
to mimic the behavior of human traders. These algorithms have
become increasingly sophisticated to take advantage of the
improved infrastructure especially at the exchanges. Regulatory
changes have driven greater competition among the market
participants. The availability of high performance computing
and high speed networks in conjunction with the regulatory
changes and greater competition has lead to a new paradigm of
trading called High Frequency Trading (HFT).

International Journal of Knowledge Based Computer Systems Volume 05 Issue 01, 2017
 ISSN.: 2321-5623

HFT and responding to the real time changes in the
market conditions are also discussed. Some of the potential
technological solutions to solve the issues thrown up by HFT
are analyzed for their effectiveness to address the real time
performance requirements of HFT. We identify Complex
Event Processing (CEP) as a candidate to address the HFT
problem. The paper is divided into 3 parts; part A deals
with understanding HFT and the challenges that it poses to
the technological processing. In Part B we look at Complex
Event Processing (CEP) and the types of problems it can be
applied to. In Part C we show a framework to process HFT
using techniques derived from CEP.

Keywords: High frequency trading, Complex event
processing, Big data processing.

18 International Journal of Knowledge Based Computer Systems Volume 5, Issue 1, June 2017

Fig. 1: Latency Vs Position Held

There is no clear distinction between the terms “algorithmic
trading” and “high frequency trading” in popular literature.
Therefore it is important to differenti-ate between these terms.
[1] provides a good discussion on the differences be-tween
these terms. The differences are clearly brought about in Fig. 1.
Algo-rithmic trading refers to the ability to place and execute
orders electronically using computer algorithms as opposed to
non-electronic modes like telephone, mail, or in person. Fig. 1
shows the relationship between algorithmic trading, traditional
long term investment and HFT in terms of latency and the
time for which the positions are held. As depicted, HFT is a
subset of algorithmic trad-ing where the positions are held for
a small time (typically for a few seconds or even lesser) and
the latency of trading is very low with the help of high speed
networks and fast computing. On the other hand the traditional
long term in-vesting involves holding period of up to several
years. For long term investors the speed of execution of orders
does not have high priority. HFT is an impre-cise term which
has no legal or regulatory definition. The U.S. Securities and
Exchange Commission (SEC) which oversees the US capital
markets came up with the following characteristics which apply
to HFT trading [2]:
 1. The use of very fast and sophisticated algorithms for

creating, routing and executing orders.
 2. The use of data feeds to minimize network and other

latencies as well as co-location services offered by the
exchanges. Co-located servers are machines which are
placed in rented racks which are in the vicinity of the
exchange server. This is done with an aim to reduce the
network latency.

 3. Very short time frames for establishing and liquidating
positions are maintained. This results in frequent turnover
in the financial instrument being traded.

 4. Numerous orders are submitted which are canceled within
a short dura-tion. Typically the open orders are canceled
within milliseconds [3].

 5. The trading day is closed as flat as possible, i.e. unhedged
positions are typically not carried overnight.

These characteristics are typical of HFT trading firms but all
HFT trading need not exhibit all of these characteristics. HFT
volumes have grown substantially over the past few years and
therefore have had a major impact on capital markets. HFT
trading accounts for about 55% of the US equity market volume
and about 40% of the European equity markets. In terms of
absolute numbers, it amounts to over 5 billion shares worth daily
volumes in the US markets alone [4]. Almost all HFT traders try
to make a small profit on a large amount of trades. The typical
profit per trade is so small that it would not be worthwhile for
regular market participants, but since HFT traders deal with a
huge amount of trades, the small profits per trade add up to
a good amount. Some strategies may not make profits on all
trades but on 51% of trades [5], but the trading volumes may
still make it a overall profitable HFT strategy. HFT traders use a
variety of strategies to keep ahead of the markets. It is possible
to use a combination of strategies to maximize the profits for
a particular situation. The strategies can be broadly classified
into 2 categories: passive strategies and aggressive strategies
[6]. Passive strategies include statistical arbitrage trading and
market making. Aggressive strategies include momentum
ignition and order anticipation.

Statistical arbitrage trading [7] involves benefiting from the
price difference for the same security or related securities. The
difference may be in the prices of the same security trading at
two or more different exchanges or locations. For example a
stock may trade at $50.50 at NYSE and at $50.75 at NASDAQ.
So a simple strategy could be to simultaneously put a sell order
at NASDQL and a buy order at NYSE and hope to make $0.25.
This strategy requires very quick (almost simultaneous) access
to both NYSE and NASDAQ. Since there will be many players
trying the same strategy the fastest one tends to profit the most
and the slower players may find that the market has moved
against them resulting in losses. There may be difference in
the price of individual securities and in the constituents in
an ETF basket. If the S&P 500 based index moves higher,
but the underlying stock does not for some reason, one can
simultaneously sell the index and buy the stock to profit from
the mispricing.

Market making involves posting simultaneous buy and sell
orders on the same se-curity with a view to provide liquidity to
the other market participants. Market makers sell at the ask price
and buy at the bid price, hoping to make the bid-ask spread. The
profits tend to increase at times of market volatility resulting in
larger spreads. In a lot of markets the market makers also earn
liquidity rebates or maker fees [8]. HFT market makers need to
adjust their bid as per the price movements and therefore tend
to submit a large number of orders and cancel them shortly. It
is found that HFT market making reduces the spreads overall
resulting in better pricing for the other market participants [9].

Order anticipation, which is also known as liquidity detection
is a strategy which is aimed at detecting large open orders

Framework to Process High Frequency Trading Using Complex Event Processing 19

(typically from institutional investors). The strategy involves
putting several small orders and checking if they get filled
quickly. If they do then it could be concluded that there is a
large open order sitting which can allow the HFT player to trade
ahead of the detected li-quidity. The consequence of liquidity
detection is that the HFT players will profit at the cost of
institutional investors who tend to have large orders.

Momentum ignition is a strategy where a HFT player initiates
several orders with the aim of causing rapid movements in
the price of the securities. The intention of triggering the
price movement is to induce other traders (including other
al-gorithmic and HFT traders) to participate in the trading of
the security causing a buildup of momentum in a particular
direction (up or down). After the price has moved sufficiently,
the initiator of the momentum can liquidate previously held
open position at higher prices. There has been a debate in recent
times whether such kind of behavior is unethical or even illegal
[10].

These are not the only HFT strategies used; other could be news
trading, latency arbitrage etc. Traders are constantly trying
different techniques to stay ahead in the HFT game.

As seen in the previous discussion on HFT, the primary
challenge is that of han-dling the “velocity” of big data. In
summary the main challenges for HFT processing are:
 1. Real Time Decision Making
 – The ability to calculate risks and prices and positions

at portfolio scale in near real time
 2. High Performance Computing
 – The ability to evaluate all the available data from

different sources in real time
 – Execution of trading strategies in real time
 3. Message Latency
 – Low latency networking
 – Reducing the time between decision making and

execution
 – Proximity

Without the ability to detect, analyze and respond in real time,
a HFT trader will not have a good chance of surviving in the
market. Traditionally, the financial organizations attempted to
achieve low latency by utilizing high performance computing
infrastructure, especially capable in floating point processing.
The drawback of this approach is that of scaling. It is not easy
to add more high performance computing nodes as it is to add
commodity hardware. Additionally the performance of the
storage system will also become a bottleneck when there is
storage and transfer of large amounts of data, as is that case
with HFT. The storage problem is typically solved using a
distributed file system using several nodes which would provide
both load balancing and fault tolerance. This architecture also
provides the advantage of a high aggregate I/O bandwidth. A
typical implementation of such an architecture is the Hadoop
Distributed File System (HDFS) [11]. In recent times NoSQL

based systems are proving to be popular to store and manage
heterogeneous data. Examples of NoSQL databases includes
MongoDB and Cassandra [12]. Along with this distributed
file system, a new programming model called MapReduce is
becoming widespread [13]. MapReduce essentially moves
the computing to the location of the data rather than the other
way around. MapReduce can process a large amount to data in
parallel; however it fails to provide the solution for low latency
tasks as it is a batch processing system. Other approaches using
in-memory speed ups like that used in Spark [14] improve
the performance but do not hold up for real time analytics
application like HFT. Some firms are using accelerated CPU
and GPUs to speed up computing in conjunction with network
technologies like InfiniBand [15] to improve the throughput.
Another significant issue is that of tail latency [16]. A
computational job with big data is usually split into multiple
stages with each stage being pipelined to execute on each node.
A slow performing node will block further processing and this
cascading will lengthen the tail of the latency distribution.

Due to the lack of well-defined solutions to these problems,
organizations are using incremental, exploratory to devise
customized solutions for their big data efficiency problems. We
shall explore Complex Event Processing (CEP) which promises
to be a general purpose solution to the real time analytics
problem faced by HFT.

II. complex evenT processIng

A lot of applications require the processing of flowing data
from different sources and at different rates to obtain responses
to complex queries. Examples of such applications are real
time traffic management, wireless sensor networks, click
stream analysis, equity trading etc. The cornerstone for the
technological success in a low latency environment is the ability
to clean, preprocess and analyze the correlated events in real
time. Traditional DBMS based approaches will not work for
such applications as the DBMS approach requires that the data
be first persisted and indexed before any processing. Any process
of data is typically user driven and is not related to the arrival
of the data. Therefore it is necessary to consider data as a flow
and process the flow of data using a set of predefined processing
rules. In a traditional DBMS setup, the processing happens on
stored data while updates to the data are relatively infrequent.
The query is run just once to return a complete answer. On the
other hand in stream processing, standing queries are run which
are executed continuously. As new data arrives the results of the
standing queries are updated. The major drawback of generic
stream processing systems is that they leave the responsibility
of associating the semantics with the data to the clients. Fig. 2
shows a high level schematic representation of a typical stream
processing system.

Instead of looking at the incoming information as merely a
flow of data, we can also view it as a flow of notifications of
events. Historically there have been different models of event
processing, the most important of which are publish-subscribe

20 International Journal of Knowledge Based Computer Systems Volume 5, Issue 1, June 2017

mechanism and topic based systems. In the “publish-subscribe”
mechanism, users interested in a particular type of events
would register to receive those events. The event producers
will not be aware of the registered subscribers. The topic based
systems allow the subscribers to subscribe to specific topics;
the publisher will categorize the events into topics. This was
used in BPM (Business process monitoring) systems and
workflow management systems. This system is based on the
human workflow, i.e. process one event at a time. The major
drawback of this system is that it does not exploit all the events
all the time. Fig. 3 shows a typical representation of an event-
processing architecture.

Fig. 2: Typical Stream Processing

Complex event processing systems associate semantics to the
information items being processed: the notifications of events
observed by sources [17]. These events have to be filtered and
combined to understand the information in terms of higher
level events. In complex event processing, the aim is to detect
patterns of high level events from the incoming stream of low
level events. By definition, an event is “anything that happens
or is contemplated as happening” [18]. Examples of events
can be a key stroke, an earthquake, a financial trade etc. An
event may signify a problem, an opportunity, a deviation or a
threshold or something else depending on the domain.

Fig. 3: Conventional Event Processing

Consider the following events: church bells are ringing, the
appearance of a man in a suit, a woman in a flowing gown
and people throwing confetti. A complex event can be derived
from these simple events i.e. a wedding is taking place. The
information that a wedding is taking place is not contained in

the individual events, but the combination of the events into a
complex event enables us to understand the semantics of the
complex event.

A major drawback of stream event processing is that it is
difficult to detect event pattern across multiple event streams.
The complexity increases when there are multiple event types in
addition to temporal ordering among the events. This is the area
where Complex event processing has a distinct advantage over
other techniques. Using computing power to correlate across
large amounts of events at high rates enables CEP to identify
patterns that are otherwise not apparent. CEP helps to provide
solutions by utilizing memory and data grids for analyzing
events, trends and patterns in real time and decision making
in a matter of milliseconds. This has led CEP to be a matter of
choice for typical BAM (Business Activity Monitoring). Fig.
4 shows the different types of delays or latencies that occur
during the processing of a typical event. There is a data latency
which is the elapsed time between the occurrence of the event
and the time it is captured by the system. The decision latency
is the time between the capture of the data by the system and the
time where a decision is taken on how to respond to the event.
The action latency is the time elapsed between the decision
making and the actual action taken based on the decision. CEP
is designed to minimize the decision latency and the action
latency.

Fig. 4 . Latency Graph

In CEP terminology an “event” is an object that records a piece
of activity in a system. An event has three primary features:
Form, Significance and Relativity.

Form: The form of an event is the attribute or the set of attributes
and data components of the event.

Framework to Process High Frequency Trading Using Complex Event Processing 21

Significance: The significance of the activity to the system.

Relativity: Events are related to other events by time, causality
and aggregation.

Event Relationships: The most common relationships between
events are time, causality and aggregation.

Time: This relationship allows temporal ordering of events. For
example event A happened after event B.

Causality: This defines the dependence of events in the system.
For example event B was caused due to event A.

Aggregation: This allows abstraction of relationships. For
example if event B signifies the activity comprising of
underlying activities A1, A2, A3, then event B is said to
aggregate A* events.

Fig. 5: Complex Event Processing

Fig. 5 provides a schematic high level representation of a
CEP processing architecture. Events making up the complex
events can come in from different event channels. The key
to CEP is the detection of complex event patterns before the
events get stored to the persistent database. This step enables
the real time performance of CEP. A high performance pattern
matching engine could comprise of rules, states, queries or
any combination of these. Typically a high performance event
store using in-memory database is used. A data processing
component looks at the complex events and decides to take
any further action based on rules defined in a database. The
database may also be updated with the results of the pattern
matching engine for it to be readily available in future.

A CEP engine is the heart of the CEP system which collects and
processes the events and detects the complex events. There are
several flavors of CEP engines, the most important of them are
state oriented, rule oriented and query oriented CEP engines.
Fig. 6 shows a representation of a state oriented CEP engine.
Here the data and events are modeled in the form of a state
transition machine and the system transitions from one state to
another based on the events which are received.

Fig. 6: State Oriented CEP

Fig. 7: Rule Oriented CEP

Fig. 7 represents a rule oriented CEP engine. Such an engine
utilizes a set of rules to detect complex events and patterns
using the complex events. The CEP rule oriented engine
enables correlation and aggregation of events over a time
window and pattern detection involving multiple events. As
shown in the diagram the result of the rule oriented detection of
complex events may lead to generation of further events. CEP
can express rules that cannot be defined intuitively in other
paradigms. Rules could be to detect event logic patterns like
events arriving in a certain sequence, or even absence of events.
There could be rules with built in temporal awareness like
detecting events accruing within a certain moving time frame.

22 International Journal of Knowledge Based Computer Systems Volume 5, Issue 1, June 2017

Fig. 8: Query Oriented CEP

Fig. 8 shows a representation of the query based CEP engine.
Unlike a RDBMS which store data and queries are run through
it, here the queries are stored and data is run through it. It runs in
a continuous execution mode than in an ad hoc query mode. The
query language is SQL based and typically has an in-memory
database to improve performance. Apart for regular operators
like joining and counting and logical operators like “ad”, “or”,
“not”, the query language will have temporal operators like
“within T(Z)” (X and Y within T(20 sec) and “between”. In
addition it may also have sequence operators “->” (A->B event
B follows event A).

III. Framework For HIgH Frequency TradIng
usIng cep

In this section we discuss a high level architecture for effective
processing of HFT. Any HFT processing system should be able
to support the following functions.

 ∑ Receive incoming market quotes.
 ∑ Receive and evaluate news feeds and social media feeds.
 ∑ Perform correlation and other econometric analysis.
 ∑ Identify and evaluate patterns which could be exploited

via HFT.
 ∑ Design an algorithm for the opportunity identified.
 ∑ Initiate trading signals based on the algorithm.
 ∑ Dynamically manage the portfolio based on the risk and

market conditions.

We saw the applicability of CEP for real time pattern detection
and response to the detected pattern. However a CEP based

HFT framework is not sufficient to achieve the speeds required
to come on top of other HFT players. To do this we need to
focus on every aspect of the processing elements to minimize
the latency. As summarized in part A, the main technological
challenges in processing HFT are real time decision making
and handling message latency.

Message and network latency: The issue of message latency can
be handled by utilizing the best of breed network infrastructure.
We provide a quick summary of the hardware requirements
needed to manage the message and network latency. The section
is necessarily short as it only deals with putting together off the
shelf hardware components. The HFT infrastructure needs to
have the capability to perform super fast message handling, and
a low latency network. A common technique used is to make use
of collocation services provided by the exchanges to minimize
the network round trip between the exchange and the HFT
servers. Direct Market Access (DMA) is required to eliminate
the latency in the broker’s systems. DMA is a electronic facility
that allows traders to directly interact with the order book of
an exchange [19]. When it comes to network interconnect
speed, Infiniband is the interconnect of choice. InfiniBand is
a networking and communications standard that features very
high throughput and very low latency [15]. It supports a latency
of 2 nanoseconds with a very high throughput rate of over 100
GB/s. It is also imperative to use hardware accelerators for
market data feed handling, market data line handling, and order
access/execution [20]. Such accelerators are based on FPGA
and can handle up to 10 million messages per second with a
latency of only 15 nanoseconds.

We will focus on the architecture for supporting real time
decision making for HFT. As we alluded to in part A, CEP will
provide a good platform to support real time event processing.
The first thing to consider is the different data feeds into the
HFT system. There would be several market feeds from
different exchanges. Almost all the exchange feeds would be in
the format of (Financial Information eXchange) FIX protocol
which is the worldwide standard for international real-time
exchange of information related to the securities transactions
and markets [21]. In addition there should be a feed from the
news agencies like Reuters or Bloomberg to stay up to date with
the economic and political happenings around the world and
respond appropriately. It would also be beneficial to be also
to tap into social networking streams like twitter to gauge the
reaction to major news events. Big data analytical approaches
like sentiment analysis using machine learning is needed to
sort through the vast data coming via the feeds [22]. Finally,
feeds from currency, commodity and bond markets may also
be needed if HFT algorithms like statistical arbitrage across
markets are used. Fig. 9 shows a representation of the incoming
and outgoing flows in a HFT system.

Framework to Process High Frequency Trading Using Complex Event Processing 23

Fig. 9: Data Feeds

Fig. 10 presents a conceptual framework for CEP based HFT
processing. The major components are the core CEP engine, a
event bus or channel, a distributed event/data cache, a real time
decision service and a persistent store.

The event bus or channel is the backbone of the system
through which the events and messages are transferred between
different components at high speeds. The channel can carry
multiple event types. The events carried by a single channel
can be consumed by multiple consumers (fan out), or events
from multiple channels could go to a single consumer (fan in).
A channel is basically a sort of a queue which has an associated
thread pool. This allows the upstream and downstream
components to operate asynchronously. Channels are useful in
increasing the concurrency especially when in incoming data is
in a single feed.

The first component of the CEP engine is the Event preprocessing
subsystem. Event preprocessing is the process of preparing
incoming events and metadata for further stages of complex
event processing. It will involve the separation and discarding
of unused event data, and the reformatting of the events for
downstream event processing. The Event pre processor performs
the following functions: Event Identification, Selection,
Filtering, Monitoring and Enrichment. Event Identification
involves recognizing the events from the raw incoming data. It
also involves identifying the event as belonging to a particular
event type. Event selection means identifying particular events
to be used for further analysis and pattern matching.

Fig. 10: CEP Engine for HFT

The selected events are then filtered based on some property
of the events. Monitoring involves observing particular event
channels to identify particular events of interest. The final step
in preprocessing is enrichment where the event is augmented
with additional information based on prior events.

There can be one or more rule agents at the core of the CEP
engine. The main task of the rule engine is to detect situations
or conditions based on a combination of events. The rules could
be a combination of traditional business rules and inference
rules. A rule engine typically has several phases of execution.
The first stage is signaling which deals with the detection of an
event. The next stage is triggering where the association of an
event with the set of rules defined for it is done. After triggering
there comes the evaluation phase in which the conditional

24 International Journal of Knowledge Based Computer Systems Volume 5, Issue 1, June 2017

part for each triggered rule is evaluated. The next phase is
scheduling in which we define an execution order between
selected rules. In the final phase called execution, the execution
of all the actions associated to selected rules is done. The rule
engine will provide an expressive rule language to provide
the rules. Complex and intricate rules including temporal and
contextual awareness could be easily defines with such a rule
language. “The event processing rules may be prescribed in
many different ways, including graphical methods, Java code
or SQL code. The rules could be also defined by finite state
machines, UML diagrams, ECA (event-condition-action) rules
or reactive rules that are triggered by event patterns” [18].
The following is an example of a possible rule: “If NASDAQ
falls more than 0.21% over its 10 minute moving average &&
IBM falls less than 0.15% over its 10 minute moving average
&& ORCL has a positively increasing moving average with
delta<0.25 then buy ORCL with a 2% stop loss.”

The query agent is the component which enables the CEP to
filter, query, and perform pattern matching operations on streams
of data using a declarative, SQL-like language. The query
language supports filtering, aggregation, pattern matching, and
joining of event streams and other data sources. The output of
the queries is sent to any downstream listeners. Fig. 11 shows
a query defined in Continuous Query Language (CQL), used in
Oracle CEP (Oracle 2011).

<query id=”perc” ordering-constraint=”PARTITION_
ORDERED” partition-expression=”symbol”>

<![CDATA[select symbol, lastPrice, percLastPrice from S
MATCH_RECOGNIZE (

PARTITION BY symbol

MEASURES

B.symbol as symbol,

B.lastPrice as lastPrice,

100*(B.lastPrice - A.lastPrice)/A.lastPrice

as percLastPrice

ALL MATCHES PATTERN (A B)

DEFINE B AS

(100*(B.lastPrice - A.lastPrice)/A.lastPrice > 2.0

or 100*(B.lastPrice - A.lastPrice)/A.lastPrice < -2.0)

) as T

]]>

</query>

Fig. 11: Sample CQL Query

There are two main stages to the processing done by the
query agent. In the first stage, the incoming flow of market
data is joined against the symbol watch and an output event
is generated for each input event that matches a symbol on

the watch list. The output from this initial filtering stage is fed
into a subsequent pattern matching stage implemented by the
query with id “perc”. The pattern matching query produces
an output event whenever it detects that the price of a given
stock has increased or decreased by more than 2 percent from
its immediately previous price. The output from the pattern
match query is sent to any downstream listeners which compute
aggregate statistics and latency data for the benchmark based on
the output events it receives. The query language will support
the concept of windows which defines the portions of input
flow to be considered during the execution of the operators.
Windows are either logical (based on time) or physical (based
on count). In the case of logical windows, the bounds are defined
as a function of time. For example compute an operation only
on the elements that arrived during the last ‘n’ minutes. In the
case of physical windows, the bounds depend on the number of
items included in the window. For example limit the scope of an
operator to the last ‘n’ elements.

An important component of the HFT processing architecture
is the distributed event and data cache. The cache is used for
distributed data access. The data may be written to the cache
and written back to the database asynchronously. The cache sits
between the processing nodes (rule agent and query agent) and
the persistent storage services. As the cache is distributed, one
needs to take care to maintain the coherence of data in the cache.
An Observer pattern could be implemented to take advantage
of the cache. A good example of the data to be cached is the
market data. As the market data values from the data feeds
come in, it could trigger a subscription and update the cached
values. Apart from market data, even event windows and
detected complex events could be cached and the cache could
be updated as the window slides over. Thus the availability
of the cache component will directly support the continuous
queries run by the query agent. So having the distributed cache
will support scalability as multiple CEP engines could be run I
parallel fed by the distributed cache of market data and events.
The continuous aggregation will allow the computation of real
time risk and pricing.

The final component of the HFT architecture is the Real time
Decision service. The purpose of the service is to take real time
decisions based on the patterns detected by the CEP engine
and respond in a manner which optimizes profitability and
minimizes risk. To achieve its objectives, the real time decision
service has two major sub-components: a learning service and
a decision service. The learning service automatically learns
from each detected complex events and discovers important
correlations. The learning can then be used to make predictions.
The prediction can be based on machine learning techniques,
either supervised learning using a training set (of historical
data) or unsupervised learning based on the data stream. The
predictors used in the prediction will be the key performance
indicators of the complex events. The learning component
contains a ML part which works on the continuously streaming
training set. A large set of predictors is necessary for building
the internal machine learning model. The prediction can be

Framework to Process High Frequency Trading Using Complex Event Processing 25

made in the form of an event and the predicted event can be used
to define further complex events. Other learning models based
on regression and SVM may also be considered. An important
consideration to be made is about the performance of the
learning algorithm and the number of predictors used. Most HFT
algorithms necessarily need to be simple with minimal number
of predictors to meet the challenge of extreme performance.
The decision service combines rules and automated predictive
models to define contextual and optimal decision logic. The
decision logic needs to be highly scalable and self-adjusting
and agile to the market volatility. The decision service should
be capable of rule modification, measurement and analysis in
real time. An important aspect of this component is routing, in
which based on the event type and data, the appropriate output
adapter is called for the execution. For example if an arbitrage
opportunity is detected where a security is trading lower at
location A compared to location B, a buy order should be sent
to location A and a sell order needs to be sent to location B.

Iv. conclusIon

HFT processing poses several technological challenges. There
are currently being managed by expensive and high end
computing infrastructure leading to a quasi monopoly by the
large broker-dealers. In this paper we saw some of the challenges
of HFT processing and considered a few alternatives towards
the solution. In part B we have provided a detailed picture of
Complex Event Processing, which is usually used for business
activity monitoring and similar applications. In part C we have
provided a conceptual architecture using CEP elements and other
components like a distributed cache and a real time decision
service to address the HFT processing challenges. While this
approach still calls for high end networking infrastructure and
collocation, the processing elements could be constructed out
of (relatively) commodity hardware.

reFerences

[1] I. Aldridge, High Frequency Trading, John Wiley &
Sons, Inc. 2010.

[2] SEC, “Concept release on equity market structure,” no.
34, 2010.

[3] M. Chlistalla, “High frequency trading, better than its
reputation?,” Dtsch. Bank Res., vol. 8, no. 3, pp. 217-
224, 2011.

[4] M. Durbin, All About High-Frequency Trading, McGraw
Hill Professional, 2010.

[5] C. M. Jones, “What do we know about high-frequency
trading?,” Columbia Bus. Sch. Res. Pap. No. 13-11, pp.
1-56, 2013.

[6] R. S. Miller, and G. Shorter, “High frequency trading
Overview of recent developments,” Washingt. Congr.
Res. Serv., 2016.

[7] M. Avellaneda, and J.-H. Lee, “Statistical arbitrage in
the US equities market,” Quant. Financ., vol. 10, no. 7,
pp. 761-782, 2010.

[8] J. A. Brogaard, T. Hendershott, and R. Riordan, “High-
frequency trading and price discovery,” Rev. Financ.
Stud., vol. 27, no. 8, pp. 2267-2306, 2014.

[9] J. A. Brogaard, “High frequency trading and its impact
on market quality,” Management, p. 66, 2010.

[10] SEC, “Equity market structure literature review part II:
High frequency trading,” U.S. Secur. Exch. Comm. Staff
Div. Trading Mark., vol. 2014, no. March, pp. 1-37,
2014.

[11] A. Hadoop, “Hadoop,” 2009-03-06. Available: http//ha-
doop. apache. org, 2009.

[12] V. Abramova, and J. Bernardino, “NoSQL databases:
MongoDB vs cassandra,” Proc. Int. Conf. Comput. Sci.
Softw. Eng. ACM 2013, pp. 14-22, 2013.

[13] J. Dean, and S. Ghemawat, “MapReduce,”
Communications of the ACM, vol. 53, no. 1. p. 72, 2010.

[14] A. Spark, “Apache SparkTM - Lightning-fast cluster
computing,” Spark.Apache.Org, 2015. .

[15] G. F. Pfister, “An introduction to the infiniband archi-
tecture,” High Perform. Mass Storage Parallel {I/O}
Technol. Appl., no. 42, pp. 617-632, 2001.

[16] J. Dean, and L. A. Barroso, “The tail at scale,” Commun.
ACM, vol. 56, no. 2, p. 74, 2013.

[17] G. Cugola, and A. Margara, “Processing flows of infor-
mation,” ACM Comput. Surv., vol. 44, no. 3, pp. 1-62,
2012.

[18] D. Luckham, and R. Schulte, “Event processing glos-
sary - Version 1.1,” Processing, no. July, pp. 1-19, 2008.

[19] M. Fugazza, and A. Nicita, “The direct and relative ef-
fects of preferential market access,” J. Int. Econ., vol.
89, no. 2, pp. 357-368, 2013.

[20] P. Grun, “Introduction to InfiniBand TM for end users,”
2010.

[21] S. Swarnkar, and J. Jenq, “Implementation of FIX en-
gine and order management systems using ASP . NET
C#,”.

[22] S. Kumar, F. Morstatter, and H. Liu, Twitter Data
Analytics, Springer, p. 89, 2013.

