
Abstract: The financial services industry had always been a 
data intensive industry. From insurance to capital markets 
the role of data has been pivotal for a lot of applications like 
financial modeling, portfolio optimization, asset/liability 
matching, fraud detection and risk modeling. The big data 
revolution has provided a lot of options for innovation 
and improved efficiency in this domain. At the same time, 
a new set of challenges has been thrown up which need to 
be overcome for future growth and sustainability in the 
financial services industry. In recent times the securities 
trading market has undergone dramatic changes resulting 
in the growth of high velocity data. Velocity being one of 
the Vs of Big data, presents a unique set of challenges to the 
capital markets. The tradition approach of using Business 
Intelligence (BI) is no longer scaling especially in terms 
of the velocity of data. During the previous decade most 
of the firms in the capital markets have made significant 
investments in their ability to collect, store, manage and 
analyze (to some extent) large amount of data. Based on 
the benefits offered by big data analytics, financial services 
firms are now able to provide highly personalized and real 
time location based services rather than only product-based 
services which was possible earlier. The rise of electronic 
trading and the availability of real time stock prices and 
real time currency trading make it necessary to have 
real time risk analysis. Market participants who have 
the ability to analyze the data in real time will be able to 
garner a disproportionate part of the available profit pool. 
The availability of huge amounts of financial data, high 
rate of data generation, and the heterogeneity of financial 
data make it difficult to capture, process and perform 
timely analysis of data. Traditional financial systems are 
not designed to cope with a wide variety of data, especially 
unstructured data from Twitter, news, social media, blogs 
etc which affect market dynamics in real time. Traditional 
data warehousing and BI techniques like extract, transform 
and load (ETL) take a huge amount of time (often days) to 
process the large amounts of data and are thus not receptive 
to real time analytics.

This paper discusses the implication of the rise of big data 
and especially that of high velocity data in the domain 
of High Frequency Trading (HFT), a growing niche of 
securities trading. We first take a brief look at the intricacies 
of HFT including some of the commonly used strategies used 
by HFT traders. The technological challenges in processing 
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I. HIgH Frequency TradIng

The knowledge economy is in the process of continuous 
automation. The tasks which were considered specialized 
and were done by highly skilled people are now increasingly 
being done by intelligent systems. Dealing with big data and its 
associated analytics is no longer a niche area; its applications 
and impact are already being felt in the broader economy. In this 
paper we take a look at High Frequency Trading (HFT) which 
has become an important part of the knowledge economy. HFT 
illustrates a very important V of big data i.e. Velocity.  The paper 
begins with a brief discussion on big data and the challenges in 
its processing and analytics. This discussion will focus on the 
aspect of velocity of big data processing.

There has been a trend towards greater transparency and 
efficiency in stock markets. Over the past few years the trading 
of financial securities has been significantly impacted by the 
advent of technology. It started with the replacing of human 
intermediaries on the stock market floor by electronic trading 
using limit orders. This led to the development of algorithms 
to mimic the behavior of human traders. These algorithms have 
become increasingly sophisticated to take advantage of the 
improved infrastructure especially at the exchanges. Regulatory 
changes have driven greater competition among the market 
participants. The availability of high performance computing 
and high speed networks in conjunction with the regulatory 
changes and greater competition has lead to a new paradigm of 
trading called High Frequency Trading (HFT).
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HFT and responding to the real time changes in the 
market conditions are also discussed. Some of the potential 
technological solutions to solve the issues thrown up by HFT 
are analyzed for their effectiveness to address the real time 
performance requirements of HFT. We identify Complex 
Event Processing (CEP) as a candidate to address the HFT 
problem.  The paper is divided into 3 parts; part A deals 
with understanding HFT and the challenges that it poses to 
the technological processing. In Part B we look at Complex 
Event Processing (CEP) and the types of problems it can be 
applied to. In Part C we show a framework to process HFT 
using techniques derived from CEP.

Keywords: High frequency trading, Complex event 
processing, Big data processing.
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Fig. 1: Latency Vs Position Held

There is no clear distinction between the terms “algorithmic 
trading” and “high frequency trading” in popular literature. 
Therefore it is important to differenti-ate between these terms. 
[1] provides a good discussion on the differences be-tween 
these terms. The differences are clearly brought about in Fig. 1. 
Algo-rithmic trading refers to the ability to place and execute 
orders electronically using computer algorithms as opposed to 
non-electronic modes like telephone, mail, or in person. Fig. 1 
shows the relationship between algorithmic trading, traditional 
long term investment and HFT in terms of latency and the 
time for which the positions are held. As depicted, HFT is a 
subset of algorithmic trad-ing where the positions are held for 
a small time (typically for a few seconds or even lesser) and 
the latency of trading is very low with the help of high speed 
networks and fast computing. On the other hand the traditional 
long term in-vesting involves holding period of up to several 
years. For long term investors the speed of execution of orders 
does not have high priority. HFT is an impre-cise term which 
has no legal or regulatory definition. The U.S. Securities and 
Exchange Commission (SEC) which oversees the US capital 
markets came up with the following characteristics which apply 
to HFT trading [2]:  
 1. The use of very fast and sophisticated algorithms for 

creating, routing and executing orders. 
 2. The use of data feeds to minimize network and other 

latencies as well as co-location services offered by the 
exchanges. Co-located servers are machines which are 
placed in rented racks which are in the vicinity of the 
exchange server. This is done with an aim to reduce the 
network latency. 

 3. Very short time frames for establishing and liquidating 
positions are maintained. This results in frequent turnover 
in the financial instrument being traded.

 4. Numerous orders are submitted which are canceled within 
a short dura-tion. Typically the open orders are canceled 
within milliseconds [3]. 

 5. The trading day is closed as flat as possible, i.e. unhedged 
positions are typically not carried overnight. 

These characteristics are typical of HFT trading firms but all 
HFT trading need not exhibit all of these characteristics. HFT 
volumes have grown substantially over the past few years and 
therefore have had a major impact on capital markets. HFT 
trading accounts for about 55% of the US equity market volume 
and about 40% of the European equity markets. In terms of 
absolute numbers, it amounts to over 5 billion shares worth daily 
volumes in the US markets alone [4]. Almost all HFT traders try 
to make a small profit on a large amount of trades. The typical 
profit per trade is so small that it would not be worthwhile for 
regular market participants, but since HFT traders deal with a 
huge amount of trades, the small profits per trade add up to 
a good amount. Some strategies may not make profits on all 
trades but on 51% of trades [5], but the trading volumes may 
still make it a overall profitable HFT strategy. HFT traders use a 
variety of strategies to keep ahead of the markets. It is possible 
to use a combination of strategies to maximize the profits for 
a particular situation. The strategies can be broadly classified 
into 2 categories: passive strategies and aggressive strategies 
[6]. Passive strategies include statistical arbitrage trading and 
market making. Aggressive strategies include momentum 
ignition and order anticipation. 

Statistical arbitrage trading [7] involves benefiting from the 
price difference for the same security or related securities. The 
difference may be in the prices of the same security trading at 
two or more different exchanges or locations. For example a 
stock may trade at $50.50 at NYSE and at $50.75 at NASDAQ. 
So a simple strategy could be to simultaneously put a sell order 
at NASDQL and a buy order at NYSE and hope to make $0.25. 
This strategy requires very quick (almost simultaneous) access 
to both NYSE and NASDAQ. Since there will be many players 
trying the same strategy the fastest one tends to profit the most 
and the slower players may find that the market has moved 
against them resulting in losses. There may be difference in 
the price of individual securities and in the constituents in 
an ETF basket. If the S&P 500 based index moves higher, 
but the underlying stock does not for some reason, one can 
simultaneously sell the index and buy the stock to profit from 
the mispricing.

Market making involves posting simultaneous buy and sell 
orders on the same se-curity with a view to provide liquidity to 
the other market participants. Market makers sell at the ask price 
and buy at the bid price, hoping to make the bid-ask spread. The 
profits tend to increase at times of market volatility resulting in 
larger spreads. In a lot of markets the market makers also earn 
liquidity rebates or maker fees [8]. HFT market makers need to 
adjust their bid as per the price movements and therefore tend 
to submit a large number of orders and cancel them shortly. It 
is found that HFT market making reduces the spreads overall 
resulting in better pricing for the other market participants [9]. 

Order anticipation, which is also known as liquidity detection 
is a strategy which is aimed at detecting large open orders 
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(typically from institutional investors). The strategy involves 
putting several small orders and checking if they get filled 
quickly. If they do then it could be concluded that there is a 
large open order sitting which can allow the HFT player to trade 
ahead of the detected li-quidity. The consequence of liquidity 
detection is that the HFT players will profit at the cost of 
institutional investors who tend to have large orders.

Momentum ignition is a strategy where a HFT player initiates 
several orders with the aim of causing rapid movements in 
the price of the securities. The intention of triggering the 
price movement is to induce other traders (including other 
al-gorithmic and HFT traders) to participate in the trading of 
the security causing a buildup of momentum in a particular 
direction (up or down). After the price has moved sufficiently, 
the initiator of the momentum can liquidate previously held 
open position at higher prices. There has been a debate in recent 
times whether such kind of behavior is unethical or even illegal 
[10].

These are not the only HFT strategies used; other could be news 
trading, latency arbitrage etc. Traders are constantly trying 
different techniques to stay ahead in the HFT game.

As seen in the previous discussion on HFT, the primary 
challenge is that of han-dling the “velocity” of big data. In 
summary the main challenges for HFT processing are:
 1. Real Time Decision Making 
 – The ability to calculate risks and prices and positions 

at portfolio scale in near real time
 2. High Performance Computing
 – The ability to evaluate all the available data from 

different sources in real time
 – Execution of trading strategies in real time 
 3. Message Latency
 – Low latency networking
 – Reducing the time between decision making and 

execution
 – Proximity

Without the ability to detect, analyze and respond in real time, 
a HFT trader will not have a good chance of surviving in the 
market. Traditionally, the financial organizations attempted to 
achieve low latency by utilizing high performance computing 
infrastructure, especially capable in floating point processing. 
The drawback of this approach is that of scaling. It is not easy 
to add more high performance computing nodes as it is to add 
commodity hardware. Additionally the performance of the 
storage system will also become a bottleneck when there is 
storage and transfer of large amounts of data, as is that case 
with HFT. The storage problem is typically solved using a 
distributed file system using several nodes which would provide 
both load balancing and fault tolerance. This architecture also 
provides the advantage of a high aggregate I/O bandwidth. A 
typical implementation of such an architecture is the Hadoop 
Distributed File System (HDFS) [11].  In recent times NoSQL 

based systems are proving to be popular to store and manage 
heterogeneous data. Examples of NoSQL databases includes 
MongoDB and Cassandra [12]. Along with this distributed 
file system, a new programming model called MapReduce is 
becoming widespread [13]. MapReduce essentially moves 
the computing to the location of the data rather than the other 
way around. MapReduce can process a large amount to data in 
parallel; however it fails to provide the solution for low latency 
tasks as it is a batch processing system. Other approaches using 
in-memory speed ups like that used in Spark [14] improve 
the performance but do not hold up for real time analytics 
application like HFT. Some firms are using accelerated CPU 
and GPUs to speed up computing in conjunction with network 
technologies like InfiniBand [15] to improve the throughput. 
Another significant issue is that of tail latency [16]. A 
computational job with big data is usually split into multiple 
stages with each stage being pipelined to execute on each node. 
A slow performing node will block further processing and this 
cascading will lengthen the tail of the latency distribution. 

Due to the lack of well-defined solutions to these problems, 
organizations are using incremental, exploratory to devise 
customized solutions for their big data efficiency problems. We 
shall explore Complex Event Processing (CEP) which promises 
to be a general purpose solution to the real time analytics 
problem faced by HFT.

II. complex evenT processIng

A lot of applications require the processing of flowing data 
from different sources and at different rates to obtain responses 
to complex queries. Examples of such applications are real 
time traffic management, wireless sensor networks, click 
stream analysis, equity trading etc. The cornerstone for the 
technological success in a low latency environment is the ability 
to clean, preprocess and analyze the correlated events in real 
time. Traditional DBMS based approaches will not work for 
such applications as the DBMS approach requires that the data 
be first persisted and indexed before any processing. Any process 
of data is typically user driven and is not related to the arrival 
of the data. Therefore it is necessary to consider data as a flow 
and process the flow of data using a set of predefined processing 
rules. In a traditional DBMS setup, the processing happens on 
stored data while updates to the data are relatively infrequent. 
The query is run just once to return a complete answer. On the 
other hand in stream processing, standing queries are run which 
are executed continuously. As new data arrives the results of the 
standing queries are updated. The major drawback of generic 
stream processing systems is that they leave the responsibility 
of associating the semantics with the data to the clients. Fig. 2 
shows a high level schematic representation of a typical stream 
processing system.

Instead of looking at the incoming information as merely a 
flow of data, we can also view it as a flow of notifications of 
events. Historically there have been different models of event 
processing, the most important of which are publish-subscribe 
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mechanism and topic based systems. In the “publish-subscribe” 
mechanism, users interested in a particular type of events 
would register to receive those events. The event producers 
will not be aware of the registered subscribers. The topic based 
systems allow the subscribers to subscribe to specific topics; 
the publisher will categorize the events into topics.  This was 
used in BPM (Business process monitoring) systems and 
workflow management systems. This system is based on the 
human workflow, i.e. process one event at a time. The major 
drawback of this system is that it does not exploit all the events 
all the time. Fig. 3 shows a typical representation of an event-
processing architecture. 

Fig. 2: Typical Stream Processing

Complex event processing systems associate semantics to the 
information items being processed: the notifications of events 
observed by sources [17]. These events have to be filtered and 
combined to understand the information in terms of higher 
level events. In complex event processing, the aim is to detect 
patterns of high level events from the incoming stream of low 
level events. By definition, an event is “anything that happens 
or is contemplated as happening” [18]. Examples of events 
can be a key stroke, an earthquake, a financial trade etc.  An 
event may signify a problem, an opportunity, a deviation or a 
threshold or something else depending on the domain. 

Fig. 3: Conventional Event Processing

Consider the following events: church bells are ringing, the 
appearance of a man in a suit, a woman in a flowing gown 
and people throwing confetti. A complex event can be derived 
from these simple events i.e. a wedding is taking place. The 
information that a wedding is taking place is not contained in 

the individual events, but the combination of the events into a 
complex event enables us to understand the semantics of the 
complex event.

A major drawback of stream event processing is that it is 
difficult to detect event pattern across multiple event streams. 
The complexity increases when there are multiple event types in 
addition to temporal ordering among the events. This is the area 
where Complex event processing has a distinct advantage over 
other techniques. Using computing power to correlate across 
large amounts of events at high rates enables CEP to identify 
patterns that are otherwise not apparent. CEP helps to provide 
solutions by utilizing memory and data grids for analyzing 
events, trends and patterns in real time and decision making 
in a matter of milliseconds. This has led CEP to be a matter of 
choice for typical BAM (Business Activity Monitoring). Fig. 
4 shows the different types of delays or latencies that occur 
during the processing of a typical event.  There is a data latency 
which is the elapsed time between the occurrence of the event 
and the time it is captured by the system. The decision latency 
is the time between the capture of the data by the system and the 
time where a decision is taken on how to respond to the event. 
The action latency is the time elapsed between the decision 
making and the actual action taken based on the decision. CEP 
is designed to minimize the decision latency and the action 
latency. 

Fig. 4 . Latency Graph

In CEP terminology an “event” is an object that records a piece 
of activity in a system. An event has three primary features: 
Form, Significance and Relativity.

Form: The form of an event is the attribute or the set of attributes 
and data components of the event. 
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Significance: The significance of the activity to the system.

Relativity: Events are related to other events by time, causality 
and aggregation. 

Event Relationships: The most common relationships between 
events are time, causality and aggregation. 

Time: This relationship allows temporal ordering of events. For 
example event A happened after event B.

Causality: This defines the dependence of events in the system. 
For example event B was caused due to event A. 

Aggregation: This allows abstraction of relationships. For 
example if event B signifies the activity comprising of 
underlying activities A1, A2, A3, then event B is said to 
aggregate A* events.

Fig. 5: Complex Event Processing

Fig. 5 provides a schematic high level representation of a 
CEP processing architecture. Events making up the complex 
events can come in from different event channels. The key 
to CEP is the detection of complex event patterns before the 
events get stored to the persistent database. This step enables 
the real time performance of CEP. A high performance pattern 
matching engine could comprise of rules, states, queries or 
any combination of these. Typically a high performance event 
store using in-memory database is used.  A data processing 
component looks at the complex events and decides to take 
any further action based on rules defined in a database. The 
database may also be updated with the results of the pattern 
matching engine for it to be readily available in future.

A CEP engine is the heart of the CEP system which collects and 
processes the events and detects the complex events. There are 
several flavors of CEP engines, the most important of them are 
state oriented, rule oriented and query oriented CEP engines. 
Fig. 6 shows a representation of a state oriented CEP engine. 
Here the data and events are modeled in the form of a state 
transition machine and the system transitions from one state to 
another based on the events which are received.

Fig. 6: State Oriented CEP

Fig. 7: Rule Oriented CEP

Fig. 7 represents a rule oriented CEP engine. Such an engine 
utilizes a set of rules to detect complex events and patterns 
using the complex events. The CEP rule oriented engine 
enables correlation and aggregation of events over a time 
window and pattern detection involving multiple events. As 
shown in the diagram the result of the rule oriented detection of 
complex events may lead to generation of further events. CEP 
can express rules that cannot be defined intuitively in other 
paradigms. Rules could be to detect event logic patterns like 
events arriving in a certain sequence, or even absence of events. 
There could be rules with built in temporal awareness like 
detecting events accruing within a certain moving time frame.
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Fig. 8: Query Oriented CEP

Fig. 8 shows a representation of the query based CEP engine. 
Unlike a RDBMS which store data and queries are run through 
it, here the queries are stored and data is run through it. It runs in 
a continuous execution mode than in an ad hoc query mode.  The 
query language is SQL based and typically has an in-memory 
database to improve performance. Apart for regular operators 
like joining and counting and logical operators like “ad”, “or”, 
“not”, the query language will have temporal operators like 
“within T(Z)” (X and Y within T(20 sec) and “between”. In 
addition it may also have sequence operators “->” (A->B event 
B follows event A). 

III. Framework For HIgH Frequency TradIng 
usIng cep

In this section we discuss a high level architecture for effective 
processing of HFT. Any HFT processing system should be able 
to support the following functions.

 ∑ Receive incoming market quotes.
 ∑ Receive and evaluate news feeds and social media feeds.
 ∑ Perform correlation and other econometric analysis.
 ∑ Identify and evaluate patterns which could be exploited 

via HFT.
 ∑ Design an algorithm for the opportunity identified.
 ∑ Initiate trading signals based on the algorithm.
 ∑ Dynamically manage the portfolio based on the risk and 

market conditions.

We saw the applicability of CEP for real time pattern detection 
and response to the detected pattern. However a CEP based 

HFT framework is not sufficient to achieve the speeds required 
to come on top of other HFT players. To do this we need to 
focus on every aspect of the processing elements to minimize 
the latency. As summarized in part A, the main technological 
challenges in processing HFT are real time decision making 
and handling message latency. 

Message and network latency: The issue of message latency can 
be handled by utilizing the best of breed network infrastructure. 
We provide a quick summary of the hardware requirements 
needed to manage the message and network latency. The section 
is necessarily short as it only deals with putting together off the 
shelf hardware components. The HFT infrastructure needs to 
have the capability to perform super fast message handling, and 
a low latency network. A common technique used is to make use 
of collocation services provided by the exchanges to minimize 
the network round trip between the exchange and the HFT 
servers. Direct Market Access (DMA) is required to eliminate 
the latency in the broker’s systems.  DMA is a electronic facility 
that allows traders to directly interact with the order book of 
an exchange [19]. When it comes to network interconnect 
speed, Infiniband is the interconnect of choice. InfiniBand is 
a networking and communications standard that features very 
high throughput and very low latency [15]. It supports a latency 
of 2 nanoseconds with a very high throughput rate of over 100 
GB/s. It is also imperative to use hardware accelerators for 
market data feed handling, market data line handling, and order 
access/execution [20]. Such accelerators are based on FPGA 
and can handle up to 10 million messages per second with a 
latency of only 15 nanoseconds.  

We will focus on the architecture for supporting real time 
decision making for HFT. As we alluded to in part A, CEP will 
provide a good platform to support real time event processing. 
The first thing to consider is the different data feeds into the 
HFT system. There would be several market feeds from 
different exchanges. Almost all the exchange feeds would be in 
the format of (Financial Information eXchange) FIX protocol 
which is the worldwide standard for international real-time 
exchange of information related to the securities transactions 
and markets [21]. In addition there should be a feed from the 
news agencies like Reuters or Bloomberg to stay up to date with 
the economic and political happenings around the world and 
respond appropriately. It would also be beneficial to be also 
to tap into social networking streams like twitter to gauge the 
reaction to major news events. Big data analytical approaches 
like sentiment analysis using machine learning is needed to 
sort through the vast data coming via the feeds [22]. Finally, 
feeds from currency, commodity and bond markets may also 
be needed if HFT algorithms like statistical arbitrage across 
markets are used. Fig. 9 shows a representation of the incoming 
and outgoing flows in a HFT system.
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Fig. 9: Data Feeds

Fig. 10 presents a conceptual framework for CEP based HFT 
processing. The major components are the core CEP engine, a 
event bus or channel, a distributed event/data cache, a real time 
decision service and a persistent store.

The event bus or channel is the backbone of the system 
through which the events and messages are transferred between 
different components at high speeds. The channel can carry 
multiple event types. The events carried by a single channel 
can be consumed by multiple consumers (fan out), or events 
from multiple channels could go to a single consumer (fan in).  
A channel is basically a sort of a queue which has an associated 
thread pool. This allows the upstream and downstream 
components to operate asynchronously. Channels are useful in 
increasing the concurrency especially when in incoming data is 
in a single feed.

The first component of the CEP engine is the Event preprocessing 
subsystem. Event preprocessing is the process of preparing 
incoming events and metadata for further stages of complex 
event processing. It will involve the separation and discarding 
of unused event data, and the reformatting of the events for 
downstream event processing. The Event pre processor performs 
the following functions: Event Identification, Selection, 
Filtering, Monitoring and Enrichment. Event Identification 
involves recognizing the events from the raw incoming data. It 
also involves identifying the event as belonging to a particular 
event type. Event selection means identifying particular events 
to be used for further analysis and pattern matching. 

Fig. 10: CEP Engine for HFT

The selected events are then filtered based on some property 
of the events. Monitoring involves observing particular event 
channels to identify particular events of interest. The final step 
in preprocessing is enrichment where the event is augmented 
with additional information based on prior events. 

There can be one or more rule agents at the core of the CEP 
engine. The main task of the rule engine is to detect situations 
or conditions based on a combination of events. The rules could 
be a combination of traditional business rules and inference 
rules. A rule engine typically has several phases of execution. 
The first stage is signaling which deals with the detection of an 
event. The next stage is triggering where the association of an 
event with the set of rules defined for it is done. After triggering 
there comes the evaluation phase in which the conditional 
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part for each triggered rule is evaluated. The next phase is 
scheduling in which we define an execution order between 
selected rules. In the final phase called execution, the execution 
of all the actions associated to selected rules is done. The rule 
engine will provide an expressive rule language to provide 
the rules. Complex and intricate rules including temporal and 
contextual awareness could be easily defines with such a rule 
language.  “The event processing rules may be prescribed in 
many different ways, including graphical methods, Java code 
or SQL code. The rules could be also defined by finite state 
machines, UML diagrams, ECA (event-condition-action) rules 
or reactive rules that are triggered by event patterns” [18]. 
The following is an example of a possible rule: “If NASDAQ 
falls more than 0.21% over its 10 minute moving average && 
IBM falls less than 0.15% over its 10 minute moving average 
&& ORCL has a positively increasing moving average with 
delta<0.25 then buy ORCL with a 2% stop loss.”

The query agent is the component which enables the CEP to 
filter, query, and perform pattern matching operations on streams 
of data using a declarative, SQL-like language. The query 
language supports filtering, aggregation, pattern matching, and 
joining of event streams and other data sources. The output of 
the queries is sent to any downstream listeners. Fig. 11 shows 
a query defined in Continuous Query Language (CQL), used in 
Oracle CEP (Oracle 2011). 

<query id=”perc” ordering-constraint=”PARTITION_
ORDERED” partition-expression=”symbol”>

<![CDATA[ select symbol, lastPrice, percLastPrice   from S 
MATCH_RECOGNIZE (

PARTITION BY symbol 

MEASURES 

B.symbol as symbol,

B.lastPrice as lastPrice, 

100*(B.lastPrice - A.lastPrice)/A.lastPrice 

as percLastPrice

ALL MATCHES PATTERN (A B) 

DEFINE B AS 

(100*(B.lastPrice - A.lastPrice)/A.lastPrice > 2.0

or 100*(B.lastPrice - A.lastPrice)/A.lastPrice < -2.0)

) as T 

]]> 

</query>

Fig. 11: Sample CQL Query 

There are two main stages to the processing done by the 
query agent. In the first stage, the incoming flow of market 
data is joined against the symbol watch and an output event 
is generated for each input event that matches a symbol on 

the watch list. The output from this initial filtering stage is fed 
into a subsequent pattern matching stage implemented by the 
query with id “perc”. The pattern matching query produces 
an output event whenever it detects that the price of a given 
stock has increased or decreased by more than 2 percent from 
its immediately previous price. The output from the pattern 
match query is sent to any downstream listeners which compute 
aggregate statistics and latency data for the benchmark based on 
the output events it receives. The query language will support 
the concept of windows which defines the portions of input 
flow to be considered during the execution of the operators. 
Windows are either logical (based on time) or physical (based 
on count). In the case of logical windows, the bounds are defined 
as a function of time. For example compute an operation only 
on the elements that arrived during the last ‘n’ minutes. In the 
case of physical windows, the bounds depend on the number of 
items included in the window. For example limit the scope of an 
operator to the last ‘n’ elements.

An important component of the HFT processing architecture 
is the distributed event and data cache. The cache is used for 
distributed data access. The data may be written to the cache 
and written back to the database asynchronously. The cache sits 
between the processing nodes (rule agent and query agent) and 
the persistent storage services. As the cache is distributed, one 
needs to take care to maintain the coherence of data in the cache.  
An Observer pattern could be implemented to take advantage 
of the cache. A good example of the data to be cached is the 
market data. As the market data values from the data feeds 
come in, it could trigger a subscription and update the cached 
values. Apart from market data, even event windows and 
detected complex events could be cached and the cache could 
be updated as the window slides over. Thus the availability 
of the cache component will directly support the continuous 
queries run by the query agent. So having the distributed cache 
will support scalability as multiple CEP engines could be run I 
parallel fed by the distributed cache of market data and events. 
The continuous aggregation will allow the computation of real 
time risk and pricing. 

The final component of the HFT architecture is the Real time 
Decision service. The purpose of the service is to take real time 
decisions based on the patterns detected by the CEP engine 
and respond in a manner which optimizes profitability and 
minimizes risk.  To achieve its objectives, the real time decision 
service has two major sub-components: a learning service and 
a decision service. The learning service automatically learns 
from each detected complex events and discovers important 
correlations. The learning can then be used to make predictions. 
The prediction can be based on machine learning techniques, 
either supervised learning using a training set (of historical 
data) or unsupervised learning based on the data stream. The 
predictors used in the prediction will be the key performance 
indicators of the complex events. The learning component 
contains a ML part which works on the continuously streaming 
training set. A large set of predictors is necessary for building 
the internal machine learning model. The prediction can be 
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made in the form of an event and the predicted event can be used 
to define further complex events. Other learning models based 
on regression and SVM may also be considered. An important 
consideration to be made is about the performance of the 
learning algorithm and the number of predictors used. Most HFT 
algorithms necessarily need to be simple with minimal number 
of predictors to meet the challenge of extreme performance. 
The decision service combines rules and automated predictive 
models to define contextual and optimal decision logic. The 
decision logic needs to be highly scalable and self-adjusting 
and agile to the market volatility. The decision service should 
be capable of rule modification, measurement and analysis in 
real time. An important aspect of this component is routing, in 
which based on the event type and data, the appropriate output 
adapter is called for the execution. For example if an arbitrage 
opportunity is detected where a security is trading lower at 
location A compared to location B, a buy order should be sent 
to location A and a sell order needs to be sent to location B. 

Iv. conclusIon

HFT processing poses several technological challenges. There 
are currently being managed by expensive and high end 
computing infrastructure leading to a quasi monopoly by the 
large broker-dealers. In this paper we saw some of the challenges 
of HFT processing and considered a few alternatives towards 
the solution. In part B we have provided a detailed picture of 
Complex Event Processing, which is usually used for business 
activity monitoring and similar applications. In part C we have 
provided a conceptual architecture using CEP elements and other 
components like a distributed cache and a real time decision 
service to address the HFT processing challenges. While this 
approach still calls for high end networking infrastructure and 
collocation, the processing elements could be constructed out 
of (relatively) commodity hardware. 
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